跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐豐霖
研究生(外文):Hsu, Feng-Ling
論文名稱:考慮乘積式雜訊與多重限制之T-S模糊模型的滑動模式模糊控制器設計
論文名稱(外文):Sliding Mode Fuzzy Controller Design Based on T-S Fuzzy Model with Multiplicative Noises Subject to Multiple Constraints
指導教授:張文哲張文哲引用關係
指導教授(外文):Chang, Wen-Jer
口試委員:黃培華蘇國和鍾鴻源張文哲
口試委員(外文):Huang, Pei-HwaSu, Kuo-HoChungㄝ, Hung-YuanChang, Wen-Jer
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:63
中文關鍵詞:滑動模式控制模糊控制T-S模糊模型協方差控制被動限制
外文關鍵詞:Sliding Mode ControlFuzzy ControlT-S Fuzzy ModelCovariance ControlPassivity Constraint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本文研究一個新型的滑動模式模糊控制器設計問題,此控制器是針對一個具有乘積式雜訊、個別狀態方差限制以及被動限制的非線性多輸入多輸出系統,此外,我們同時考慮了連續系統以及離散系統的控制器設計問題。首先,我們利用模糊模型來表示非線性的動態系統,此模糊模型會將非線性系統轉換為多個局部線性系統。接著,我們設計一個滑動模式模糊控制器,使得此系統收斂至滑動平面上,並且達到論文中所提出的多重限制。在此論文中將會介紹滑動模式模糊控制系統的穩定性限制、個別狀態方差限制與被動限制,基於Lyapunov理論推導出一些充分條件,並利用線性矩陣不等式求解。透過求解對應的充分條件,可以得到一個平行分布補償的模糊控制器,此控制器用以保證受到狀態方差限制與被動限制的閉迴路非線性系統的穩定性。最後,我們將提出連續和離散的範例來表明,受到滑動模式模糊控制器控制的非線性系統可以實現穩定性限制、個別狀態方差限制與被動限制。
This thesis studies a novel sliding mode fuzzy controller design problem for MIMO nonlinear systems encountering multiplicative noises with individual state variance and passivity constraints. In addition, we considered both continuous-time and discrete-time systems. Firstly, nonlinear dynamic plants are represented by such a fuzzy model, and then the overall fuzzy model of nonlinear plant is transformed into several local linear systems. Then, considering a sliding mode fuzzy controller (SMFC) design problem, the controller causes system converging to the sliding surface and achieving multiple constraints. After that, we introduce concept of stability constraints, individual state variance constraints and passivity constraints for the sliding mode fuzzy control system. Some sufficient condition are derived in terms of linear matrix inequalities based on the Lyapunov theory. By solving the corresponding sufficient conditions, a parallel distributed compensation based fuzzy controller can be obtained to guarantee the stability of the closed-loop nonlinear systems subject to variance and passivity performance constraints. At last, some continuous and discrete examples show that the nonlinear systems controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints.
Table of Contents
摘要 I
Abstract II
Table of Contents III
List of Figures V
Acronyms VI
Explanation of Symbols VI

Chapter 1
Introduction
1.1 Background and Motivation 2
1.2 Preliminary Knowledge 3
1.3 Contributions 4
1.4 Organization of This Thesis 5

Chapter 2
Sliding Mode Fuzzy Control for Continuous Nonlinear Stochastic Systems Subject to Individual State Variance and Passivity Constraints
2.1 Sliding Surface and System Descriptions 7
2.2 Hitting Phase and Hitting Controller Design 9
2.3 Sliding Mode Fuzzy Controller Design 12
2.4 Summary 19

Chapter 3
Sliding Mode Fuzzy Control for Discrete Nonlinear Stochastic Systems Subject to Individual State Variance and Passivity Constraints
3.1 Sliding Surface and System Descriptions 21
3.2 Reaching Conditions and Switching Controller Design 22
3.3 Sliding Mode Fuzzy Controller Design 27
3.4 Summary 35

Chapter 4
Simulations
4.1 Simulations to the Continuous Nonlinear Ship Steering
Systems 37
4.2 Simulations to the Discrete Nonlinear Truck-Trailer Systems 47

Chapter 5
Conclusions
5.1 Summary of This Thesis 58
5.2 Future Work 58

Reference


Reference

[1] E. Gershon, U. Shaked and I. Yaesh, “ control and filtering of discrete-time stochastic systems with multiplicative noise”, Automatica, Vol. 37, No. 3, pp. 409-417, 2001.
[2] S. L. Hu, D. Yue, X. P. Xie and Z. P. Du, “Event-triggered stabilization for networked stochastic systems with multiplicative noise and network-induced delays”, Information Sciences, Vol. 299, pp. 178-197, 2015.
[3] C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines motor planning”, Nature, Vol. 394, No. 6695, pp. 780-784, 1998.
[4] E. Todorov, “Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system,” Neural Computation, Vol. 17, No. 5, pp. 1084-1108, 2005.
[5] W. J. Chang, W. Y. Wu and C. C. Ku, “ constrained fuzzy control via state observer feedback for discrete-time Takagi-Sugeno fuzzy systems with multiplicative noises”, ISA Transactions, Vol. 50, No. 1, pp. 37-43, 2011.
[6] W. J. Chang, C. C. Ku and C. H. Chang, “PDC and non-PDC fuzzy control with relaxed stability conditions for continuous-time multiplicative noised fuzzy systems”, Journal of the Franklin Institute - Engineering and Applied Mathematics, Vol. 349, No. 8, pp. 2664-2686, 2012.
[7] W. J. Chang and Y. J. Shih, “Fuzzy control of multiplicative noised nonlinear systems subject to actuator saturation and performance constraints”, Neurocomputing, Vol. 148, pp. 512-520, 2015.
[8] W. J. Chang, C. P. Kuo and C. C. Ku, “Intelligent fuzzy control with imperfect premise matching concept for complex nonlinear multiplicative noised systems”, Neurocomputing, Vol. 154, pp. 276-283, 2015.
[9] W. J. Chang, Y. C. Chang and C. C. Ku, “Passive fuzzy control via fuzzy integral Lyapunov function for nonlinear ship drum-boiler systems”, ASME, Journal of Dynamic Systems Measurement and Control-Transactions, Vol. 137, No. 4, 2015.
[10] W. J. Chang, C. C. Ku, P. H. Huang and W. Chang, “Fuzzy controller design for passive continuous-time affine T-S fuzzy models with relaxed stability conditions”, ISA Transactions, Vol. 48, No. 3, pp. 295-303, 2009.
[11] W. J. Chang, L. Z. Liu and C. C. Ku, “Passive fuzzy controller design via observer feedback for stochastic Takagi-Sugeno fuzzy models with multiplicative noises”, International Journal of Control, Automation, and Systems, Vol. 9, No. 3, pp. 550-557, 2011.
[12] C. G. Li, H. B. Zhang and X. F. Liao, “Passivity and passification of uncertain fuzzy systems”, IEE Proc. of Circuits Devices Systems, Vol. 152, No. 6, pp. 649-653, 2005.
[13] R. Lozano, B. Brogliato, O. Egeland and B. Maschke, Dissipative Systems Analysis and Control Theory and Application, Springer, London, 2000.
[14] K. Y. Chang and T. L. Cheng, “Covariance control for bilinear stochastic systems via sliding mode control concept”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E90-A, No. 12, pp. 2957-2961, 2007.
[15] K. Y. Chang, H. J. Lin and T. L. Cheng, “Sliding mode controller design with norm and variance constraints for bilinear stochastic systems”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E91-A, No. 2, pp. 686-691, 2010.
[16] K. Y. Chang, C. Y. Lu, C. H. Shih and P. C. Chen, “Multi-objective controller design for bilinear stochastic systems via sliding mode control concept”, Proc. of the Institution of Mechanical Engineers, Part I: J. Systems and Control Engineering, Vol. 223, No. 4, pp. 435-443, 2009.
[17] W. J. Chang and H. Y. Chung, “A covariance controller design incorporating optimal estimation for nonlinear stochastic systems”, ASME, Journal of Dynamic Systems Measurement and Control-Transactions, Vol. 118, No. 2, pp. 346-349, 1996.
[18] W. J. Chang and B. J. Huang, “Variance and passivity constrained fuzzy control for nonlinear ship steering systems with state multiplicative noises”, Mathematical Problems in Engineering, Article ID: 687317, 2013.
[19] W. J. Chang and B. J. Huang, “Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises”, ISA Transactions, Vol. 53, No. 6, pp. 1787-1795, 2014.
[20] X. Huang and B. Huang, “Multi-loop decentralized PID control based on covariance control criteria: An LMI approach”, ISA Transactions, Vol. 43, No. 1, pp. 49-59, 2004.
[21] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control”, IEEE Trans. on Systems, Man, and Cybernetics, Vol. 15, No. 1, pp. 116-132, 1985.
[22] R. DeCarlo, S. Zak and S. Drakunov, Variable structure sliding mode controller design, The Control Handbook, edited by William Levine, Boca Raton: CRC Press Inc. 1996.
[23] C. Edwards and S. K. Spurgeon, Sliding Modes Control: Theory and Applications, London, UK: Taylor & Francis, 1998
[24] A. Saghafinia, H. W. Ping and M. N. Uddin, “Fuzzy sliding mode control based on boundary layer theory for chattering-free and robust induction motor drive”, International Journal of Advanced Manufacturing Technology, Vol. 71, No. 1-4, pp. 57-68, 2014.
[25] A. Saghafinia, H. W. Ping, M. N. Uddin and K. S. Gaeid, “Adaptive Fuzzy Sliding-Mode Control into Chattering-Free IM Drive”, IEEE Trans. on Industry Applications, Vol. 51, No. 1, pp. 692-701, 2015.
[26] K. Furuta and Y. Pan, “Variable structure control with sliding sector”, Automatica, Vol. 36, No. 2, pp. 211-228, 2000.
[27] A. Pisano and E. Usai, “Sliding mode control: A survey with applications in math”, Mathematics and Computers in Simulation, Vol. 81, No. 5, pp. 954-979, 2011.
[28] J. Yang, Q. L. Wang and Y. Li, “Sliding mode variable structure control theory: A survey”, Proc. of the 31st Chinese Control Conference, Hefei, China, pp. 3197-3202, 2012.
[29] N. Sun, Y. Fang and H. Chen, “A novel sliding mode control method for an inertia wheel pendulum system”, 2015 International Workshop on Recent Advances in Sliding Modes, DOI: 10.1109/RASM.2015.7154585, pp. 1-6, 2015.
[30] Y. H. Liu, T. G. Jia, Y. G. Niu and Y. Y. Zou, “Design of sliding mode control for a class of uncertain switched systems”, International Journal of Systems Science, Vol. 46, No. 6, pp. 993-1002, 2015.
[31] Q. Gao, L. Liu, G. Feng, Y. Wang and J. B. Qiu, “Universal fuzzy integral sliding-mode controllers based on T-S fuzzy models”, IEEE Trans. on Fuzzy Systems, Vol. 22, No. 2, pp. 350-362, 2014.
[32] G. Nadzinski, G. Vladev and Y. Zheng, “A design of discrete-time SMC for nonlinear systems based on fuzzy T-S model”, Intelligent systems, DOI: 10.1109/IS.2012.6335236, pp. 317-324, 2012.
[33] Y. Zheng, Y. W. Jing, R. D. Hou and T. Ren, “Discrete-time fuzzy sliding mode control of nonlinear systems”, Intelligent Control and Automation, Vol. 1, pp. 997-1001, 2006.
[34] W. J. Chang, C. C. Ku and C. H. Chang, “PDC and non-PDC fuzzy control with relaxed stability conditions for continuous-time multiplicative noised fuzzy systems”, Journal of the Franklin Institute, DOI: 10.1016/j.jfranklin.2012.06.004, pp. 2664-2686, 2012.
[35] C. Y. Ho, H. K. Chen and Z. M. Ge, “Design of PDC controllers by matrix reversibility for synchronization of Yin and Yang chaotic Takagi-Sugeno fuzzy Henon maps”, Abstract and Applied Analysis, Vol. 2012, Article ID 358201, 11 pages, 2012.
[36] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, 2001.
[37] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
[38] G. Eli, S. Uri and Y. Isaac, Control and Estimation of State-Multiplicative Linear Systems, Springer, London, 2005.
[39] C. Lin, Q. G. Wang and T. H. Lee, “Stabilization of uncertain fuzzy time-delay systems via variable structure control approach”, IEEE Transactions on Fuzzy Systems, Vol. 13, No. 6, pp. 787-798, 2005.
[40] Z. Xi, G. Feng and T. Hesketh, “Piecewise integral sliding-mode control for T-S fuzzy systems”, IEEE Transactions on Fuzzy Systems, Vol. 19, No. 1, pp. 65-74, 2011.
[41] H. Li, J. Yu, C. Hilton and H. Liu, “Adaptive sliding-mode control for nonlinear actives suspension vehicle systems using T-S fuzzy approach”, IEEE Transactions on Industrial Electronics, Vol. 60, No. 8, pp. 676-687, 2013.
[42] V. I. Utkin, J. Guldner and J. Shi, Sliding Mode Control in Electromechanical Systems, Taylor and Francis, London, 1999.
[43] H. Y. Chung and W. J. Chang, “Constrained variance design for bilinear stochastic continuous systems”, IEE Proceedings, Part D, Control Theory and Applications, Vol. 138, No. 2, pp. 145-150, 1991.
[44] C. C. Ku, P. H. Huang and W. J. Chang, “Passive fuzzy controller design for nonlinear systems with multiplicative noises”, Journal of the Franklin Institute - Engineering and Applied Mathematics, Vol. 347, No. 5, pp. 732-750, 2010.
[45] W. Gao, Y. Wang and A. Homaifa, “Discrete-time variable structure control systems”, IEEE Trans. Industrial Electronics, Vol. 42, No. 2, pp. 117-122, 1995.
[46] W. J. Chang and C. C. Shing, “Discrete fuzzy covariance control for specified decay rate”, International Journal of Systems Science, Vol. 36, No. 4, pp. 201-208, 2005.
[47] K. Tanaka and M. Sano, “A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer”, IEEE Trans. On Fuzzy Systems, Vol.2, No. 2, pp. 119-134, 1994.
[48] H. Y. Chung, S. M. Wu and W. J. Chang, Regional fuzzy control for nonlinear ship steering systems, International Journal of Innovative Computing, Information and Control, Vol.4, No. 7, pp. 1635-1646, 2008.
[49] W. Pedrycz and G. Vukovich, “On elicitation of membership functions”, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, Vol. 32, No. 6, pp. 761-767, 2002.
[50] W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets: Analysis and Design, MIT Press, 1998.
[51] A. Arslan and M. Kaya, “Determination of fuzzy logic membership functions using genetic algorithms”, Fuzzy Sets and Systems, Vol. 118, No. 2, pp. 297-306, 2001.
[52] J. M. Garibaldi and E. C. Ifeachor, “Application of simulated annealing fuzzy model tuning to umbilical cord acid-base interpretation”, IEEE Transactions on Fuzzy Systems, Vol. 7, No, 1, pp.72-84, 1999.
[53] A. Bagis, “Determining fuzzy membership functions with tabu search-an application to control”, Fuzzy Sets and Systems, Vol. 139, No. 1, pp. 209-225, 2003.
[54] K. Cao, X. Z. Gao, H. K. Lam, A. V. Vasilakos and W. Pedrycz, “A new relaxed stability condition for Takagi-Sugeno fuzzy control systems using quadratic fuzzy Lyapunov functions and staircase membership functions”, International Journal of Fuzzy Systems, Vol. 16, No. 3, pp. 327-337, 2014.
[55] M. S. Sadeghi and N. Vafamand, “More relaxed stability conditions for fuzzy TS control systems by optimal determination of membership function information”, Control Engineering and Applied Informatics, Vol. 16, No. 2, pp. 67-77, 2014.
[56] W. J. Chang and C. C. Shing, “LMI-based fuzzy controller design with minimum upper bound input energy and state variance constraints for discrete fuzzy stochastic systems”, Journal of Intelligent & Fuzzy Systems, Vol. 15, No. 2, pp.115-124, 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top