(3.238.130.97) 您好!臺灣時間:2021/05/09 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:徐鳴遠
研究生(外文):Hsu, Ming Yuan
論文名稱:流道組態對質子交換膜燃料電池堆性能之影響
論文名稱(外文):The effects of flow channel configuration on the performance of proton exchange membrane fuel cell
指導教授:李仁傑李仁傑引用關係林資榕
指導教授(外文):Lee, Jen-ChiehLin, Tzy-Rong
口試委員:鍾雅健
口試委員(外文):Chung, Ya-Chien
口試日期:2016-01-22
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:質子交換膜燃料電池氣體流向流道擺放
外文關鍵詞:proton exchange membrane fuel cellgas flow directionflow channel configurations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究中使用的燃料電池堆是由兩個單電池串聯,其中包含兩片單面流道設計及一片雙面流道設計的石墨雙極板。所用流道設計為蜿蜒式,透過上述三片雙極板不同的排列方式、擺放角度、氣體流向的差異來探討質子交換膜燃料電池堆的性能改變。結果顯示,當電池堆流道皆為平行排列,氣體流向為由上往下時有最大功率密度為194.64 mW/cm2。氣體流向若為由下往上,不論流道如何排列皆受氣體流向影響,使得最大功率密度降至112.29 mW/cm2。在高電流密度時,因為氣體流向、流道擺放角度都容易造成陰極積水泛溢,影響整個燃料電池堆性能。而平躺放置時,電池堆裡的兩個單電池有上下之分,氫氣和氧氣受到重力的關係,無法平均分配給兩個單電池,導致電池堆之功率密度大幅下降至2.89 mW/cm2。從實驗得知,燃料電池堆的性能與氣體和水的管理密不可分。
In this study, the fuel cell stack connected by two single cells in series is used to investigate the effects of flow channel configuration on the fuel cell performance. Several different flow channel configurations are created by using the three graphite bipolar plates with serpentine flow channel. The different gas flow direction can be obtained from different flow channel configurations.

The results show that the highest power density 194.64 mW/cm2 is found for stack with all flow channel parallel in horizontal configurations and gas flow direction downward. Due to the effect of gravity on the water flow out the cathode channel, the power density of the same flow channel configuration stack is reduce to 112.29 mW/cm2 for gas flow direction upward. The phenomenon of stack performance reduction results from too much water in cathode channel to block the cathode gas through the gas diffusion layer. When making the stacks lying down, the two single cells in the fuel cell stack locate up and down, hydrogen and oxygen cannot be distributed equally to the two single cells by the gravity, which leads to the maximum power density of the fuel cell stacks dramatically declining to 2.89 mW/cm2. Therefore, the experiment shows that the performance of fuel cell stacks depends on the gas distribution and water management.

目錄
摘要 I
Abstract II
圖目錄 V
表目錄 VII
符號說明 VIII
第一章 緒論 1
1-1前言 1
1-1-1燃料電池發電原理 2
1-1-2燃料電池之種類 2
1-2 文獻回顧 4
1-3 燃料電池堆設計考量 8
1-4 研究動機 8
第二章 質子交換膜燃料電池極化特性與結構元件 9
2-1 質子交換膜燃料電池極化特性 9
2-1-1 活化極化 (tivation polarization) 10
2-1-2 歐姆極化(ohmic polarization) 11
2-1-3 濃度極化 (concentration polarization) 11
2-2 質子交換膜燃料電池之主要元件 12
2-2-1 質子交換膜(Proton Exchange Membrane ,PEM) 12
2-2-2 觸媒層(Catalyst Layer) 13
2-2-3 膜電極組 (Membrane-Electrode Assembly, MEA) 14
2-3-4 雙極板 (Bipolar plate) 14
2-3-5 氣密墊片(gasket) 16
2-3-6 端板 (end plate) 16
第三章 質子交換膜燃料電池堆的元件設計與測試 17
3-1 雙極板材料選擇及流道設計 17
3-2 3D 列印介紹及端板設計 19
3-3燃料電池堆之組裝與測試 21
第四章 結果與討論 25
4-1 單電池與電池堆之極化曲線及功率密度 29
4-2 不同氣體進出方向之電池性能比較 30
4-3 電池堆中流道排列差異之極化曲線及功率密度 36
4-4 電池堆擺放角度差異之極化曲線及功率密度 38
4-5 進氣口方向不同側之差異 42
第五章 結論 44
第六章 未來展望 46
參考文獻 47

[1]. Nam Trung Nguyen, Siew Hwa Chan. 2006, ” Micromachined polymer electrolyte membrane and direct methanol fuel cells - a review ”. Journal of Micromechanics and Microengineering. Vol. 16. pp. 1-12.
[2]. V. V. Nikam, and R. G. Reddy. 2006, ” Copper Alloy Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell ”. Electrochimica Acta. Vol. 51. pp. 6338-6345.
[3]. Jingrong Yu, Ping Cheng, Zhiqi Ma and Baolian Yi. 2003, “Fabrication of miniature silicon wafer fuel cells with improved performance ”. Journal of Power Sources. Vol. 124. pp. 40-46.
[4]. 朱思諭。2004。“流道面積比及檔板位置對具交叉型流道質子交換膜燃料電池性能的影響”。
[5]. 黃欽懌。2006。“質子交換膜燃料電池的性能分析”。第一屆台灣氫能與燃料電池學術研討會。
[6]. Jung Chung Hung. 2012, “ The Effects of Channel Depths on the Performance of Proton Exchange Membrane Fuel Cells with Metallic Bipolar Plates ”. Journal of the Chinese Society of Mechanical Engineers”, Vol. 33. pp. 265-270.
[7]. E. A. Paganin, and E. R. Gonzalez. 1998, “ Development of small polymer electrolyte fuel cell stacks ”. Journal of Power Sources. Vol. 70. pp. 55-58.
[8]. J. P. Meyers and H. L. Maynard. 2002, “ Design Considerations for Miniaturized PEM Fuel Cells ”. Journal of Power Sources. Vol.109. pp. 76-88.
[9]. Shou Shing Hsieh, Chih Lun Feng, Ching Feng Huang. 2006, “ Development and performance analysis of a H2 /air micro PEM fuel cell stack ”. Journal of Power Sources. Vol. 163. pp. 440-449.
[10]. Yuhao Lu, and Ramana G. Reddy. 2010, “ Performance of micro-PEM fuel cells with different flow fields ”. Journal of Power Sources. Vol.195. pp. 503-508.
[11]. Jen Chieh Lee, Tony Shay, Song-Kuo Chang. 2011, ” Orientation-Dependent Performance of Portable Proton Exchange Membrane Fuel Cells ”. Journal of Fuel Cell Science and Technology. Vol. 8.
[12]. Greig Chisholm, Philip J. Kitson, Niall D. Kirkaldy, Leanne G. Bloor and Leroy Cronin. 2014, ” 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture”. Energy Environ. Sci. Vol. 7. pp. 3026-3032.
[13]. Benjamin D. Gould, a, z Joseph A. Rodgers, a Michael Schuette, b Keith Bethune, c, Shaquille Louis, a Richard Rocheleau, c and Karen Swider-Lyonsa. 2015, ” Performance and Limitations of 3D-Printed Bipolar Plates in Fuel Cells”. ECS Journal of Solid State Science and Technology. Vol. 4. pp. 3063-3068.
[14]. Lyons, B., Batalov, M., Mohanty, P., Das, S. 2005, “ Rapid Prototyping of PEM Fuel Cell Bi-Polar Plates Using 3D Printing and Thermal Spray Deposition”. In Proc. SFF Symposium, Austin. pp. 446-457.
[15]. G.S. Kumar, M. Raja, S. Parthasarathy.1995, ” High performance electrodes with very low platinum loading for polymer electrolyte fuel cells ”. Electrochim. Acta Vol. 40. pp 285-290.
[16]. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A.B. Bocarsly. 2001, ” Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells ”. Journal of Power Sources. Vol. 103. pp. 1-9.
[17]. Paul Rodatz , Felix Büchi, Chris Onder, Lino Guzzella. 2004, “Operational
aspects of a large PEFC stack under practical conditions ”. Journal of Power Sources. Vol. 128. pp. 208-217.
[18]. Y. Zhang, R. Pitchumani. 2007, ” Numerical studies on an air-breathing proton exchange membrane (PEM) fuel cell ”. International Journal of Heat and Mass Transfer. Vol. 50. pp. 4698-4712.
[19]. Falin Chen , Ying-Zhi Wen , Hsin-Sen Chu , Wei-Mon Yan , Chyi-Yeou Soong. 2004, ” Convenient two-dimensional model for design of fuel channels for proton exchange membrane fuel cells ”. Journal of Power Sources. Vol. 128. pp. 125-134.
[20]. G. Vasu , A.K. Tangirala, B. Viswanathan , K.S. Dhathathreyan. 2008, ” Continuous bubble humidification and control of relative humidity of H2 for a PEMFC system ”. International Journal of Hydrogen Energy. Vol. 33. pp. 4640-4648.
[21]. Young Jun Sohn , Gu-Gon Park , Tae-Hyun Yang , Young-Gi Yoon , Won-Yong
Lee , Sung-Dae Yim, Chang-Soo Kim. 2005, ” Operating characteristics of an air-
cooling PEMFC for portable applications ”. Journal of Power Sources. Vol. 145.
pp. 604-609.


[22]. D. Picot, R. Metkemeijer, J.J. Bezian, L. Rouveyre. 2004, ” Impact of the water
symmetry factor on humidification and cooling strategies for PEM fuel cell
stacks”. Journal of Power Sources. Vol. 75. pp. 251-260.
[23]. Trung V. Nguyen , Ralph E. White. 1993, ” A Water and Heat Management Model for Proton‐Exchange‐Membrane Fuel Cells ”. Electrochem. Soc. Vol. 140. pp. 2178-2186.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔