跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張書御
研究生(外文):Chang, Shu-Yu
論文名稱:石墨烯電漿光子晶體感測器之研究
論文名稱(外文):Study of plasmonic-photonic crystal sensor with graphene
指導教授:林資榕
指導教授(外文):Lin, Tzy-Rong
口試委員:盧廷昌林資榕許進成
口試委員(外文):Lu, Tien-ChangLin, Tzy-RongHsu, Jin-Chen
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:石墨烯生物感測器表面電漿光子晶體光與物質交互作用
外文關鍵詞:graphenebiosensorsurface plasmonphotonic crystallight-matter interaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出利用石墨烯材料,與奈米線與光柵搭配,設計出電漿光子晶體共振腔結構,並利用有限元素法分析探討此結構的光學特性與其感測的性能。論文利用石墨烯的表面電漿模態縮小光波的模態體積;並且利用一維光子晶體光柵結構作為鏡面,使光侷限於共振腔中增加結構的品質因子。研究發現,透過表面電漿與光子晶體的結合,增強了光與物質交互作用的效果,使共振腔對於待測物折射率的變化更敏感。分析結果指出,此感測器之靈敏度高達2200。論文提出的結構亦可利用石墨烯的調變能力,使感測器於紅外光各波段進行偵測,有助於生物感測的相關研究發展。
In this thesis, we design a plasmonic-photonic crystal cavity with graphene as a biosensor. The property and sensitivity in plasmonic-photonic crystal cavity is theoretically investigated with the finite-element method. The hybridization of graphene plasmonic modes and photonic crystal modes lead to high-Q/Vm, enhancing the light-matter interaction. The analysis result shows that plasmonic-photonic crystal cavity with graphene has sensitivity over 2200. We can utilize the tunable function of graphene to cause the optical resonant wavelength shift. A tunable plasmonic-photonic crystal sensor with graphene open up opportunities for applications in biosensor.
致謝……………………………………………………………………………….…
摘要……………………………………………………………………………….Ⅰ
Abstract……………………………………………………………………….……Ⅱ
目錄……………………………………………………………………………..……Ⅲ
圖目錄……………………………………………………………………………….Ⅳ
表目錄………………………………………………………………………………Ⅵ
第一章 緒論…………………………………………………………………………1
1-1 簡介…………………………………………………………………………..1
1-2 文獻回顧……………………………………………………………………..2
1-3 研究動機………………………………………………………………..……8
1-4 內容架構……………………………………………………………………..9
第二章 理論與原理……………………………………………………………….10
2-1 光波模型與表面電漿…………………………………………………...….10
2-2 光子晶體與布拉格鏡面………………………………………………...….16
2-3 石墨烯材料………………………………………………………………....18
2-4 光與物質交互作用……………………………………………………...….21
第三章 感測器參數計算…………………………………………………………23
3-1 等效折射率與模態損耗…………………………………………………....23
3-2 品質因子…………………………………………………………………....24
3-3 模態體積………………………………………………………………...….25
3-4 波賽爾因子………………………………………………………………....25
3-5 感測器靈敏度…………………………………………………………...….26
3-6 感測器性能係數……………………………………………………………26
第四章 模擬與分析結果…………………………………………………………28
4-1 結構設計……………………………………………………………………28
4-2 模態分析………………………………………………………………...….29
4-3 完美光子晶體頻散曲線……………………………………………………33
4-4 鏡面與共振腔參數設計…………………………………………………....35
4-5 外部激發………………………………………………………………...….38
4-6 靈敏度與性能係數………………………………………………………....40
4-7 石墨烯共振波長調變…………………………………………………...….42
第五章 結論與未來展望……………………………………………………...….45
5-1 結論……………………………………………………………………...….45
5-2 未來展望………………………………………………………………...….46
參考文獻………………………………………………………………………...….47

1. L. C. Clark Jr. and Champ Lyons, 1962, Electrode system for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, Vol. 102, 29–45.
2. R. L. Rich and D. G. Myszka, 2005, Survey of the year 2004 commercial optical biosensor literature, Journal of Molecular Recognition, Vol. 18, 431–478.
3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, 2003, Surface plasmon subwavelength optics, Nature, Vol. 424, 824–830.
4. J. Homola, S. S. Yee, and G. Gauglitz, 1999, Surface plasmon resonance sensors: review, Sensors and Actuators B-Chemical, Vol. 54, 3–15.
5. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, 2004, Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity, Optics Express, Vol. 29, 1093–1095.
6. S. Mandal and D. Erickson, 2008, Nanoscale optofluidic sensor arrays, Optics Express, Vol. 16, 1623–1631.
7. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and Rob W. van der Heijden, 2010, Photonic crystal slot nanobeam slow light waveguides for refractive index sensing, Applied Physics Letters, Vol. 97, 151105-1–151105-3.
8. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, 2011, Hybrid photonic-plasmonic crystal nanocavities, ACS Nano, Vol. 5, 2831–2838.
9. T.-W. Lu, P.-T. Lin, and P.-T. Lee, 2014, One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts, Applied Physics Letters, Vol. 104, 191107-1–191107-4.
10. A. Vakil and N. Engheta, 2011, Transformation optics using graphene, Science, Vol. 332, 1291–1294.
11. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, 2010, Highly sensitive graphene biosensors based on surface plasmon resonance, Optics Express, Vol. 18, 14395–14400.
12. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, 2015, Mid-infrared plasmonic biosensing with graphene, Science, Vol. 349, 165–168.
13. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, 2005, Highly sensitive fiber Bragg grating refractive index sensors, Applied Physics Letters, Vol. 86, 151122-1–151122-3.
14. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, 2005, Refractive index sensor based on microstructured fiber Bragg grating, IEEE Photonics Technology Letters, Vol. 17, 1250–1252.
15. J. Topolančik, P. Bhattacharya, J. Sabarinathan and P.-C. Yu, 2003, Fluid detection with photonic crystal-based multichannel waveguides, Applied Physics Letters, Vol. 82, 1143–1145.
16. F. Dell’Olio and V. M. N. Passaro, 2007, Optical sensing by optimized silicon slot waveguides, Optics Express, Vol. 15, 4977–4993.
17. M.-K. Kim, 2015, Efficient coupling of a sub-5-nm-gap plasmonic crystal cavity with an integrated waveguide, Optics Express, Vol. 23, 2040–2047.
18. P. Xu and Y. Shi, 2013, High Q/V hybrid plasmonic photonic crystal nanobeam cavity: towards low threshold nanolasers application, Optics Communications, Vol. 311, 234–238.
19. J. Homola, 2003, Present and future of surface plasmon resonance biosensors, Analytical and Bioanalytical Chemistry, Vol. 377, 528–539.
20. B. Liedberg, C. Nylander, and I. Lunström, 1983, Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators, Vol. 4, 299–304.
21. C. Nylander, B. Liedberg, and T. Lind, 1983, Gas detection by means of surface plasmon resonance, Sensors and Actuators, Vol. 3, 79–88.
22. E. Yablonovitch, 1987, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, Vol. 58, 2059–2062.
23. S. John, 1987, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, Vol. 58, 2486–2489.
24. E. Yablonovitch, 2001, Photonic crystals: semiconductors of light, Scientific American, Vol. 285, 47–55.
25. P. A. Snow, E. K. Squire, and P. St. J. Russell, 1999, Vapor sensing using the optical properties of porous silicon Bragg mirrors, Journal of Applied Physics, Vol. 86, 1781–1784.
26. P. Xu, Q. Huang, and Y. Shi, 2013, Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities, Optics Communications, Vol. 289, 81–84.
27. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, 2015, Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance, Nanophotonics, Vol. 4, 214–223.
28. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, 2004, Electric field effect in atomically thin carbon films, Science, Vol. 306, 666–669.
29. A. K. Geim and K. S. Novoselov, 2007, The rise of graphene, Nature Materials, Vol. 6, 183–191.
30. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, 2012, A roadmap for graphene, Nature, Vol. 490, 192–200.
31. T. Low and P. Avouris, 2014, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano, Vol. 8, 1086–1101.
32. L. A. Falkovsky and A. A. Varlamov, 2007, Space-time dispersion of graphene conductivity, European Physical Journal B, Vol. 56, 281–284.
33. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, 2011, Hybrid photonic-plasmonic crystal nanocavities, ACS Nano, Vol. 5, 2831–2838.
34. S.-W. Chang, T.-R. Lin, and S.-L. Chung, 2010, Theory of plasmonic Fabry-Perot nanolasers, Optical Express, Vol. 18, 15039–15053.
35. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, 2008, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics, Vol. 2, 496–500.
36. E. D. Palik, 1985, Handbook of optical constants of solids, Academic Press.
37. B. Yun, G. Hu, R. Zhang and Y. Cui, 2014, Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating, Optics Express, Vol. 22, 28662–28670.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊