(3.235.139.152) 您好!臺灣時間:2021/05/08 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柳泰宇
研究生(外文):Liu, Tai-Yu
論文名稱:多元不飽和醛類對於海洋羽狀矽藻Phaeodactylum tricornutum 死亡特異蛋白基因 (PtDSP) 調控機制之研究
論文名稱(外文):Evaluation of Death Specific Protein gene (PtDSP) expression dynamics in the marine pennate diatom, Phaeodactylum tricornutum, under polyunsaturated aldehydes signaling
指導教授:陳秀儀陳秀儀引用關係鍾至青
指導教授(外文):Chen, Shiow-YiChung, Chih-Ching
口試委員:鍾至青黃聲蘋
口試委員(外文):Chung, Chih-ChingHwang, Sheng-Ping L.
口試日期:2016-01-06
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:44
中文關鍵詞:矽藻死亡特異蛋白不飽和醛類一氧化氮過氧化物
外文關鍵詞:diatomdeath specific proteinpolyunsaturated aldehydenitric oxidereactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

有些矽藻遭遇捕食者攻擊或是生長處於緊迫時,會誘發自身產生大量「不飽和醛類」(polyunsaturated aldehyde, PUA) 這類的二次代謝物,以做為防禦外敵或是誘導其族群產生「程式化細胞死亡」(programmed cell death, PCD) 的現象。然而,PUA如何誘導矽藻細胞在緊迫環境下,細胞生理發生反應,這樣的分子調控機制,截至今日仍沒有進行深入的研究。關於矽藻PCD現象,之前有研究指出圓形品系矽藻在生長末期會經由一氧化氮 (nitric oxide, NO) 或過氧化物 (reactive oxygen species, ROS) 做為細胞訊息傳遞媒介,大量誘發「死亡特異蛋白」基因 (death specific protein gene, DSP) 的表現,並推測其可能是促使矽藻細胞發生PCD的重要分子調控途徑。然而在羽狀品系矽藻中沒有DSP的相關研究。因此,ROS、NO、PUAs是否會調控羽狀品系矽藻DSP的表現,是本研究欲探討的主要問題。實驗使用本身不會產生PUA的海洋羽狀品系矽藻Phaeodactylum tricornutum作為模式生物,分別添加heptadienal、octadienal、decadienal等3種不同的PUA,以及H2O2 (提供ROS) 和diethylamine nitric oxide (提供NO) 進行培養,以即時定量PCR與西方墨點法測定不同處理組別,細胞內PtDSP mRNA與蛋白質的表現量。NO 與 ROS 的添加培養,確實會誘發 PtDSP 的大量表現。此外,不同PUA的添加培養實驗結果顯示,只有decadienal會誘發PtDSP mRNA的表現。有趣的是, PtDSP mRNA受到PUA誘發表現情形,並不會發生在以Tempol (ROS清除劑) 或c-PTIO (NO清除劑) 預先添加培養的矽藻細胞中,這意味著羽狀矽藻在緊迫環境下,也能接受外界環境中其他矽藻產生的PUA訊息,經由ROS或NO這類的細胞訊息傳遞媒介,將緊迫訊息傳入細胞中,進而誘發 PtDSP的表現,以調控細胞生理應付外界的環境變化。



關鍵字:矽藻、死亡特異蛋白、不飽和醛類、一氧化氮、過氧化物



Abstract

Some diatoms can produce polyunsaturated aldehydes (PUAs), which are a kind of secondary metabolites, to induce self-autolysis via NO or ROS mediated pathway when ambient environment is stressful. However, regulatory mechanism mediated by PUAs in diatoms is still unclear. In addition, previous works indicated that mRNA expression of the death specific protein (DSP), which was suggested to participate in the process of programmed cell death (PCD) in centric diatoms, was regulated by ROS or NO signaling. But, the function of DSP in pennate diatoms is not characterized so far. Therefore, the aim of this study is to clarify whether PUA signaling can regulate DSP expression in pennate diatoms. Phaeodactylum tricornutum was chosen as a model organism because it is not a PUA producer. They were first treated with three different kinds of PUA (heptadienal, octadienal, decadienal), H2O2 (as ROS donor) and diethylamine nitric oxide (as NO donor) sepeartely, and then the levels of PtDSP mRNA and its protein were detected using quantitative reverse transcription PCR (Q-PCR) and weastern blot. The results showed that NO or ROS induced significant mRNA expression of PtDSP. Moreover, only decadienal was able to induce PtDSP mRNA expression. These high expressions were suppressed when the diatoms were pretreated with Tempol (ROS scavenger) or c-PTIO (NO scavenger). These results implied that under stressful environment, P. tricornutum can sense ambient PUA released from other diatoms and then induce PtDSP expression via ROS or NO mediated regulatory pathway.




Keywords: diatom, death specific protein, polyunsaturated aldehyde, nitric oxide, reactive oxygen species


目錄

謝誌 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 文獻回顧 1
第二章 研究材料與方法 4
2.1 培養條件 4
2.2 矽藻計數 4
2.3 光合作用最大量子效率 (Fv/Fm) 4
2.4 不同生理條件處理 4
2.5 Total RNA抽取 5
2.6 專一性引子設計 6
2.7 反轉錄聚合酶反應 ( Reverse transcription reaction ) 6
2.8 即時定量聚合酶鏈鎖反應 (Quantitative real time polymerase chain reaction ) 6
2.9 西方點墨法分析 (western blot) 7
2.10 親緣演化關係圖繪製 (neighbor-joining tree) 8
第三章 結果 10
3.1 以Phylip 繪製之親緣演化樹(neighbor-joining tree) 10
3.2 Q-PCR標準曲線 10
3.3 7天全光照連續培養之細胞數、Fv/Fm值、PtDSP mRNA生長曲線圖 10
3.4 以H2O2處理P. tricornutum細胞 10
3.4.1 以不同濃度H2O2處理矽藻細胞: 11
3.4.2 H2O2 (100 μM) 處理合併ROS 清除劑Tempol (5 mM): 11
3.4.3 ROS清除劑Tempol合併H2O2處理組別對PtDSP、PtRbcL蛋白質之影響: 11
3.5 以DEANO處理P. tricornutum細胞 11
3.5.1 以不同濃度DEANO處理矽藻細胞之PtDSP mRNA的表現量: 12
3.5.2以不同濃度DEANO處理矽藻細胞之Fv/Fm值: 12
3.5.3 DEANO (250 μM) 合併ROS 清除劑Tempol (5 mM) 與NO清除劑c-PTIO (50 μM) 對PtDSP mRNA表現量的影響: 12
3.5.4 DEANO (250 μM) 合併ROS 清除劑Tempol (5 mM) 與NO清除劑c-PTIO (50 μM) 對Fv/Fm值的影響: 13
3.6 以PUAs處理P. tricornutum 13
3.6.1 以不同的PUA處理矽藻細胞之PtDSP mRNA的表現量: 13
3.6.2以PUA中的Deca處理矽藻細胞之Fv/Fm值: 14
3.6.3 Deca (50 μM) 處理合併ROS Tempol (5 mM) 清除劑以及NO清除劑 c-PTIO (50 μM) 之PtDSP mRNA的表現量: 14
3.6.4 以ROS與NO清除劑合併 Deca. 處理組別對PtDSP、PtRbcL蛋白質之影響: 14
3.7 對不同生長時期之P. tricornutum細胞處理50 μM PUAs、250 μM DEANO、100 μM H2O2試劑,對PtDSP mRNA之影響 15
第四章 討論 17
4.1 Q-PCR的測定方式 17
4.2 PUAs為可能影響矽藻DSP生長時期mRNA表現狀態的因素之一 17
4.3 PUAs直接或間接透過NO對矽藻光合作用的光反應、暗反應造成影響 17
4.4 PtDSP 從mRNA到蛋白質的過程可能涉及轉錄後調控機制(post-translation regulation) 18
4.5 其他矽藻族群產生的PUA生物訊息經由NO或ROS路徑影響羽狀品系矽藻DSP的表現 19
第五章 參考文獻 20


第五章 參考文獻

Antico, C.J., Colon, C., Banks, T., and Ramonell, K.M. (2012). Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front. Biol. 7, 48-56.
Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S.G., Allen, A.E., Apt, K.E., Bechner, M., et al. (2004). The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306, 79-86.
Ashworth, J., Coesel, S., Lee, A., Armbrust, E.V., Orellana, M.V., and Baliga, N.S. (2013). Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc. Natl. Acad. Sci. U. S. A. 110, 7518-7523.
Barofsky, A., and Pohnert, G. (2007). Biosynthesis of polyunsaturated short chain aldehydes in the diatom Thalassiosira rotula. Organic Lett. 9, 1017-1020.
Bidle, K.D., and Bender, S.J. (2008). Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot. Cell 7, 223-236.
Bidle, K.D., and Falkowski, P.G. (2004). Cell death in planktonic, photosynthetic microorganisms. Nat. Rev. Microbiol. 2, 643-655.
Bidle, K.D., Haramaty, L., Barcelos, E.R.J., and Falkowski, P. (2007). Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc. Natl. Acad. Sci. U. S. A. 104, 6049-6054.
Booker, J.R., Favetto, A., and Pomposiello, M.C. (2004). Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429, 399-403.
Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244.
Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., and Oquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667.
Choi, C.J., and Berges, J.A. (2013). New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis. 4, e490.
Chung, C.-C., Hwang, S.-P., and Chang, J. (2005). Cooccurrence of ScDSP gene expression, cell death, and DNA fragmentation in a marine diatom, Skeletonema costatum. Appl. Environ. Microbiol. 71, 8744-8751.
Chung, C.-C., Hwang, S.-P., and Chang, J. (2008). Nitric oxide as a signaling factor to upregulate the death-specific protein in a marine diatom, Skeletonema costatum, during blockage of electron flow in photosynthesis. Appl. Environ. Microbiol. 74, 6521-6527.
Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., and Neill, S.J. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 24, 667-677.
Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. U. S. A.98, 13454-13459.
d'Ippolito, G., Tucci, S., Cutignano, A., Romano, G., Cimino, G., Miralto, A., and Fontana, A. (2005). Corrigendum to “The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum”. Biochim. Biophys. Acta 1734, 214.
Durner, J., Wendehenne, D., and Klessig, D.F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. U. S. A. 95, 10328-10333.
Edwards, B.R., Bidle, K.D., and Van Mooy, B.A. (2015). Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle. Proc. Natl. Acad. Sci. U. S. A. 112, 5909-5914.
Fahrenkrog, B., Sander, U., and Aebi, U. (2003). The S. cerevisiae HtrA-like protein, Nma111p, a nuclear protein that interacts with the nuclear pore complex, promotes cell death. Yeast 20, S301-S301.
Falkowski, P.G. (2002). The ocean's invisible forest - Marine phytoplankton play a critical role in regulating the earth's climate. Could they also be used to combat global warming. Sci. Am. 287, 54-61.
Feussner, I., and Wasternack, C. (2002). The lipoxygenase pathway. Annu. Rev. Plant Biol. 53, 275-297.
Field, C.B., Behrenfeld, M.J., Randerson, J.T., and Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237-240.
Franklin, D.J., Brussaard, C.P.D., and Berges, J.A. (2006). What is the role and nature of programmed cell death in phytoplankton ecology? Eur. J. Phycol. 41, 1-14.
Gallina, A.A., Brunet, C., Palumbo, A., and Casotti, R. (2014). The effect of polyunsaturated aldehydes on Skeletonema marinoi (Bacillariophyceae): the involvement of reactive oxygen species and nitric oxide. Mar. Drugs 12, 4165-4187.
Gallina, A.A., Chung, C.-C., and Casotti, R. (2015). Expression of death-related genes and reactive oxygen species production in Skeletonema tropicum upon exposure to the polyunsaturated aldehyde octadienal. Adv. Oceanogr. Limnol. 6.
Gechev, T.S., Minkov, I.N., and Hille, J. (2005). Hydrogen peroxide-induced cell death in Arabidopsis: transcriptional and mutant analysis reveals a role of an oxoglutarate-dependent dioxygenase gene in the cell death process. IUBMB Life 57, 181-188.
Gruber, A., Kroth, P., Sachse, M., Sturm, S. (2013). Identification and evaluation of endogenous reference genes for steady state transcript quantification by qRT-PCR in the diatom Phaeodactylum tricornutum with constitutive expression independent from time and light. Endocytobiosis Cell Res. 24, 1–7.
Hovde, B.T., Deodato, C.R., Hunsperger, H.M., Ryken, S.A., Yost, W., Jha, R.K., Patterson, J., Monnat, R.J., Jr., Barlow, S.B., Starkenburg, S.R., et al. (2015). Genome sequence and transcriptome analyses of Chrysochromulina tobin: metabolic tools for enhanced algal fitness in the prominent order Prymnesiales (Haptophyceae). PLoS Genet. 11, e1005469.
Jacobson, M.D., Weil, M., and Raff, M.C. (1997). Programmed cell death in animal development. Cell 88, 347-354.
Jaspers, P., and Kangasjarvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiol. Plant 138, 405-413.
Kazan, K., and Manners, J.M. (2008). Jasmonate signaling: toward an integrated view. Plant Physiol. 146, 1459-1468.
Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S.Q., Kachroo, P., et al. (2000). Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. U. S. A. 97, 8849.
Lam, E. (2004). Controlled cell death, plant survival and development. Nat. Rev. Mol. Cell Biol. 5, 305-315.
Lee, R.E., Puente, L.G., Kaern, M., and Megeney, L.A. (2008). A non-death role of the yeast metacaspase: Yca1p alters cell cycle dynamics. PLoS One 3, e2956.
Lee, R.E.C., Brunette, S., Puente, L.G., and Megeney, L.A. (2010). Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc. Natl. Acad. Sci. U. S. A. 107, 13348-13353.
Lin, H.Y., Shih, C.Y., Liu, H.C., Chang, J., Chen, Y.L., Chen, Y.R., Lin, H.T., Chang, Y.Y., Hsu, C.H., and Lin, H.J. (2013). Identification and characterization of an extracellular alkaline phosphatase in the marine diatom Phaeodactylum tricornutum. Mar. Biotechnol. 15, 425-436.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25, 402-408.
Luo, C.S., Liang, J.R., Lin, Q., Li, C., Bowler, C., Anderson, D.M., Wang, P., Wang, X.W., and Gao, Y.H. (2014). Cellular responses associated with ROS production and cell fate decision in early stress response to iron limitation in the diatom Thalassiosira pseudonana. J. Proteome Res. 13, 5510-5523.
Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S.J., Wolf, D.H., and Frohlich, K.U. (1999). Oxygen stress: A regulator of apoptosis in yeast. J. Cell Biol. 145, 757-767.
Mann, D.G., and Droop, S.J.M. (1996). Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336, 19-32.
Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9, 274-280.
Moharikar, S., D'Souza, J.S., Kulkarni, A.B., and Rao, B.J. (2006). Apoptotic-Like Cell Death Pathway Is Induced in Unicellular Chlorophyte Chlamydomonas Reinhardtii (Chlorophyceae) Cells Following Uv Irradiation: Detection and Functional Analyses1. J. Phycol. 42, 423-433.
Mueller, L.D., and Ayala, F.J. (1981). Dynamics of single-species population-growth: Experimental and statistical analysis. Theor. Popul. Biol. 20, 101-117.
Nagao, R., Yokono, M., Teshigahara, A., Akimoto, S., and Tomo, T. (2014). Light-harvesting ability of the fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the Diatom Chaetoceros gracilis as revealed by picosecond time-resolved fluorescence spectroscopy. J. Physiol. Biochem. 118, 5093-5100.
Nedelcu, A.M. (2006). Evidence for p53-like-mediated stress responses in green algae. FEBS Lett. 580, 3013-3017.
Nelson, D.M., Treguer, P., Brzezinski, M.A., Leynaert, A., and Queguiner, B. (1995).
Production and dissolution of biogenic silica in the ocean-revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359-372.
Petrov, V., Hille, J., Mueller-Roeber, B., and Gechev, T.S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 6, 69.
Pippen, E.L., Nonaka, M. (1958). A convenient method for synthesizing normal aliphatic 2,4-dienals. J. Org. Chem. 23, 1580–1582.
Pohnert, G. (2002). Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant Physiol. 129, 103-111.
Pohnert, G., Steinke, M., and Tollrian, R. (2007). Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198-204.
Procházková, D., Haisel, D., Wilhelmová, N., Pavlíková, D., and Száková, J. (2013). Effects of exogenous nitric oxide on photosynthesis. Photosynthetica 51, 483-489.
Rogato, A., Richard, H., Sarazin, A., Voss, B., Navarro, S.C., Champeimont, R., Navarro, L., Carbone, A., Hess, W.R., and Falciatore, A. (2014). The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum. BMC Genomics 15.
Saitou, N., and Nei, M. (1987). The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Segovia, M., Haramaty, L., Berges, J.A., and Falkowski, P.G. (2003). Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol. 132, 99-105.
Spiteller, G. (2003). The relationship between changes in the cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol. Plant 119, 5-18.
Thamatrakoln, K., Bailleul, B., Brown, C.M., Gorbunov, M.Y., Kustka, A.B., Frada, M., Joliot, P.A., Falkowski, P.G., and Bidle, K.D. (2013). Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Proc. Natl. Acad. Sci. U. S. A. 110, 20123-20128.
Thamatrakoln, K., Korenovska, O., Niheu, A.K., and Bidle, K.D. (2012). Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ. Microbiol. 14, 67-81.
Van Creveld, S.G., Rosenwasser, S., Schatz, D., Koren, I., and Vardi, A. (2015). Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME J. 9, 385-395.
Vardi, A., Berman-Frank, I., Rozenberg, T., Hadas, O., Kaplan, A., and Levine, A. (1999). Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9, 1061-1064.
Vardi, A., Bidle, K.D., Kwityn, C., Hirsh, D.J., Thompson, S.M., Callow, J.A., Falkowski, P., and Bowler, C. (2008). A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr. Biol. 18, 895-899.
Vardi, A., Formiggini, F., Casotti, R., De Martino, A., Ribalet, F., Miralto, A., and Bowler, C. (2006). A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 4, e60.
Vidoudez, C., and Pohnert, G. (2008). Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J. Plankton Res. 30, 1305-1313.
Wendehenne, D., Pugin, A., Klessig, D.F., and Durner, J. (2001). Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6, 177-183.
Wichard, T., Poulet, S.A., Halsband-Lenk, C., Albaina, A., Harris, R., Liu, D., and Pohnert, G. (2005). Survey of the Chemical Defence Potential of Diatoms: Screening of Fifty Species for α,β,γ,δ-unsaturated aldehydes. J. Chem. Ecol. 31, 949-958.
Wolfram, S., Wielsch, N., Hupfer, Y., Monch, B., Lu-Walther, H.W., Heintzmann, R., Werz, O., Svatos, A., and Pohnert, G. (2015). A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum. PLoS One 10, e0140927.
Zuppini, A., Andreoli, C., and Baldan, B. (2007). Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol. 48, 1000-1009.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔