跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:維克朗
研究生(外文):Vikram Paul
論文名稱:汞與砷對斑馬魚胚胎中紫外線傷害DNA辨識及修復活性之影響
論文名稱(外文):Detrimental Effects of Mercury(II) and Arsenite on DNA Mismatch and UV-damaged-DNA Binding Activities in Zebrafish (Danio rerio) Embryos
指導教授:許濤許濤引用關係
指導教授(外文):Todd Hsu
口試委員:易玲輝王文德
口試委員(外文):Ling-Huei YihWen-Der Wang
口試日期:2016-01-22
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:42
中文關鍵詞:CPD6-4PPZebrafish embryosArseniteMercury(II)
外文關鍵詞:CPD6-4PP斑馬魚胚胎
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究探討重金屬於環境中可能出現濃度下對斑馬魚胚胎中DNA傷害辨識作用之影響。
研究方法以凝膠電泳阻滯實驗檢測鎘、三價砷及二價汞處理斑馬魚胚胎九小時後,胚胎中辨識紫外線扭曲DNA與DNA錯誤配對活性之改變。胚胎在二價汞於1與3μM濃度下作用後,紫外線傷害產生之正環丁烷嘧啶雙體及(6-4)光合產物之辨識活性能力下降,此活性於3μM汞處理胚胎中降至未處理組之30%以下,而鎘處理並未產生明顯影響。三價砷於5至20μM濃度下未對紫外線傷害辨識作用產生清楚效應,但此金屬卻使胚胎中辨識寡核酸環錯誤配對的活性上升40%左右,卻也輕微抑制G-T錯誤配對活性,顯示三價砷對辨識不同錯誤配對之蛋白有差異性影響。全覆式原位雜交分析僅觀察到三價砷輕微抑制斑馬魚錯誤配對的辨識蛋白MSH6之基因表現,但仍需後續工作加以確認。
ABSTRACT


DNA Mismatch repair (MMR) and Nucleotide Excision Repair (NER) are the two DNA repair pathways that respectively corrects base mispairs generated during replication and removes helix distorting lesions such as UV- induced dipyrimidine photoproducts. Arsenic (As), Mercury (Hg) and Cadmium (Cd) are well known genotoxicants present in the aquatic environment. Inhibition of DNA damage repair has been proposed as one of the mechanisms of metal-induced genotoxicity. Because the potentials of Cd and Hg (II) to inhibit MMR in zebrafish embryos by disturbing the step of DNA mismatch recognition have been shown, this study explored the effects of Arsenite (AsIII) on DNA mismatch binding activities in Zebrafish embryos. Effects of the three metals on UV-damaged-DNA binding activities were also studied. Compared to Cd at 1 to 3 µM, both cyclobutane pyrimidine dimer (CPD) and (6-4) photoproduct (6-4 PP) binding activities in zebrafish embryos were found to be much more sensitive to Hg (II) at the same concentrations, suggesting that Hg (II) is a strong NER inhibitor. Conversely, both CPD and 6-4 PP binding activities were not affected by As(III) unless in embryos exposed to 10 to 20 µM of this ion, which are within the typical levels found in drinking water in contaminated areas. As (III) exposure failed to inhibit G-T and 2-loop DNA mismatch binding activities in zebrafish embryos and As (III) even caused a weak up-regulation of loop-specific binding capacity. Analysis of the gene expression of MutS homolog 6(MSH6), an important eukaryotic DNA mismatch binding factor, in zebrafish tissues by whole mount in situ hybridization suggested a weak inhibition of gene activity in embryos exposed to 10 to 20 µM As(III). Whether As (III) inhibits MSH6 gene expression in zebrafish embryos, however, awaits further investigation.

CONTENTS
Page
Contents…………………………………………………………………..2
Abstract ……………………………………………………………..........3
CHAPTER I Introduction………………………………………………...4
DNA Damage…………………………………………………………….4
1. DNA Repair……………………………………………………………....4
2. DNA Repair Pathways…………………………………............................5
3. Nucleotide Excision Repair………………………………………………6
4. MSH 6 Gene……………………………………………………………...6
5. UV Radiation…………………………………………………………......7
6. Mercury……………………………………………………………….......7
7. Arsenic………………………………………………………………...….7
8. The objectives of this research …………………………………………...8
CHAPTER II Materials and Methods…………………………………….9
1. Materials…………………………………………………....9, 10, 11, 12
2. Methods…………………………………………………………….....12
1. Culturing the shrimp for Zebrafish……………………………………....12
2. Zebrafish feeding………………………………………………………...12
3. Collection of developing zebrafish embryos………………………….....12
4. Treatment of Zebrafish embryos at sub lethal levels of Arsenic and Mercury……………………………………………………………….…13
5. Preparation of zebrafish embryos extracts…………………………........14
6. Zebra fish protein extraction………………………………………….....14
7. BCA Protein Assay………………………………………………...........14
8. Preparation of UV damaged oligonucleotides……………………….14,15
9. Electrophoretic Mobility Shift Assay……………………………......14,15
10. IN SITU Hybridization…………………………………………….……15
CHAPTER III RESULTS…………………………………………
1. Differential inhibitory effects of inhibition of UV- Damaged – DNA binding activities by Cd and Hg (II at different concentrations………...16
2. Hg (II) binding in lower concentrations on UV Induced DNA …………………………………………………………………....16
3. Dose Dependent Binding of Arsenic on CPD
And 6- 4 Photoproducts...........................................................................17
4. Mismatch Binding in Different Concentrations of As (III)…………..17
5. MSH 6 Gene Expression in Zebrafish Embryos……………………...18
6. Discussion…………………………………………………...........32, 33
7. References………………………………………………...34, 35, 36, 37

REFERENCES.
1. Acharya S, Wilson T. (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6 Proc. Natl. Acad. Sci.93:13629-13634.
2. Andrew A, Karagas R (2003) Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. Int. J. Cancer .104, 263–268.
3. Batty D. Wood R (2000). Damage recognition in nucleotide excision repair of DNA. Gene. 241,193-204.
4. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms .Toxicol. 2(8), 493-512.
5. Boland C, Luciani M (2005) Infection, inflammation, and gastrointestinal cancer. Gut. 54, 1321–1331.
6. Buchet P, Lauwerys R (1982) Inorganic arsenic metabolism in man. Arch. Toxicol. Suppl. 5, 326-327.
7. Burns F, Uddin A (2004,) Arsenic-induced enhancement of ultraviolet radiation carcinogenesis in mouse skin: A dose-response study. Environ. Health Perspect. 112, 599–603.
8. Bradford, 1976(1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem. 72:248-54.
9. Branze D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308.
10. Clarisse S, Mats L (2015) Arsenic Disruption of DNA Damage Responses—Potential Role in Carcinogenesis and Chemotherapy. Biomolecules. 5(4):2184-93.
11. Coronado J, Del M (2007) Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. JEnviron Res. 104 (3) , 383-92.
12. Daiana D, Becker S (2013) Molecular features in arsenic-induced lung tumors. Mol. Cancer 19, 12-20.
13. Ding W, Hudson L (2008) As (III) inhibits ultraviolet radiation-induced cyclobutane pyrimidine dimer repair via generation of nitric oxide in human keratinocytes. Free Rad. Biol. Med. 45, 1065–1072.
14. Driscol M, John J (2012) Diseases Associated with Defective Responses to DNA Damage Cold Spring Harb Perspect Biol. 4(12): 012773.
15. Fernández I, López J (2012) Long-term impact of arsenic in drinking water on bladder cancer health care and mortality rates 20 years after end of exposure. J Urol J Urol. 187(3), 856-861.
16. Gwak S, Park J (2014) Tetraarsenic oxide-induced inhibition of malignant glioma cell invasion in vitro via a decrease in matrix metalloproteinase secretion and protein kinase B phosphorylation. J. Neurosurg. 121(6), 1483-1491.
17. Haque R, Mazumder D (2012) Arsenic in drinking water and skin lesions: dose response data from west Bengal, India Environ Health Perspect. 120(12) 174-182.
18. Hei T. Liu X (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc.Natl. Acad. Sci.156, 95-102.
19. Hindmarsh T, McCurdy R (1986) Clinical and environmental aspects of arsenic toxicity. CRC Critical Reviews in Clinical Laboratory Sciences, 23, 315–347.
20. Ho TN, Sung ST, Huang KM, Hsu T (2015) Comparative Effects of Mercury (II) and Cadmium on MutS Homolog 6(MSH6)‐Mediated DNA Mismatch Binding Activities in Zebrafish (Danio rerio) Embryos. J. Biochem. Mol. Toxicol. 29(11), 513-520.
21. Hsu T, Huang KM, Tsai HT, Sung ST, Ho TN (2013) Cadmium (Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos. Aquat .Toxicol. 126, 9-16.
22. Hughes M, Menache M (2006) Dose-dependent disposition of sodium arsenate in mice following acute oral exposure. Fundam. Appl. Toxicol. 22 (1), 80-89.
23. Hsu T, Cheng CS (2002) Detection and partial characterization of a UV-damaged-DNA binding activity highly expressed in zebrafish (Danio rerio) embryos. Fish Physiol. Biochem. 25, 41-51.
24. Ireneusz L,Tomasz B (2013) Oxidative Stress and Replication-Independent DNA Breakage Induced by Arsenic in Saccharomyces cerevisiae. PLoS Genet. 9(7): e1003640.
25. Jurgen A, Hannes L (2014) Understanding nucleotide excision repair and its roles in cancer and ageing . Molecular Cell Biology. 15 : 465-481.
26. Karen R, King S (2013)http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=23523584 Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc. Toxicol. Appl. Pharmacol. 269, 81–88.
27. Klein C, Rossman T (2007) Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol. Appl. Pharmacol .222, 289–297.
28. Kojima C, Chignel C (2011) Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response. Toxicol Appl Pharmacol . 255 (3), 242–250.
29. Lee C, Liao W (2011) Aberrant immune responses in arsenical skin cancers. J. Med. Sci .27, 396–401.
30. Liao T, Yu C (2009) Differential effects of arsenic on cutaneous and systemic immunity: focusing on CD4+ cell apoptosis in patients with arsenic-induced Bowen’s disease. Carcinogenesis. 3(6), 1064-1072.
31. Litwin G, Bocer T (2013) Oxidative stress and replication – independent DNA Breakage induced by arsenic in Saccharomyces cerevisiae. PLoS Genet. 9(7)1003640.
32. Liya G , Guo L (2015) Arsenic Inhibits DNA Mismatch Repair by Promoting EGFR Expression and PCNA Phosphorylation . J Biol Chem. 28, 36-41.
33. Mark O’Driscoll (2012) Diseases Associated with Defective Responses to DNA Damage. Cold Spring Harb Persp. Biol. 10, 1101- 13
34. Megan J , Bernard A (2010) Age and exposure to arsenic alter base excision repair transcript levels in mice. Mutagenesis 25, 517–522.
35. Muenyi S, Mats L (2015) Arsenic Disruption of DNA Damage Responses—Potential Role in Carcinogenesis and Chemotherapy Clarisse. Biomolecules. 5 (4), 2184-2193.
36. National Research Council. Arsenic in Drinking Water: 2001 Update. Washington DC: National Academy Press. 2001.
37. Nollen M, Ebert K (2009) Impact of arsenic on nucleotide excision repair: XPC function, protein level, and gene expression. Mol. Nutr. Food Res. 53, 572–582.
38. Olivieri B, Brack C (2001) Mercury Induces Cell Cytotoxicity and Oxidative Stress and Increases β-Amyloid Secretion and Tau Phosphorylation in SHSY5Y Neuroblastoma Cells. Neurochemistry. 74, 231-236.
39. Paul B, Clement G (2014) Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology. 1007:7643-8340.
40. http://www.ncbi.nlm.nih.gov/pubmed/?term=Pereira%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=19458991Pereira C, Guilherme S (2010) Evaluation of DNA damage induced by environmental exposure to mercury in Liza aurata using the comet assay Arch. Environ. Contam. Toxicol. 58, 112-22.
41. Qin X, Liu W (2012) Poly (ADP-ribose) polymerase-1 inhibition by arsenite promotes the survival of cells with unrepaired DNA lesions induced by UV exposure. Toxicol. Sci. 127(1), 120-129.
42. Reichard J, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics. 2, 87–104.
43. Roland H, Diana D (2013) Molecular Features in arsenic –induced lung tumors Molecular Cancer 12-20: 1476-1476-4598-
44. Rossman T, Uddin A (2001) Arsenite is a cocarcinogen with solar ultraviolet radiation for mouse skin: an animal model for arsenic carcinogenesis. Appl Pharmacol 176, 64–71.
45. Sinha RP, Häder J (2002) UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 1, 225–236.
46. Stojic L , Brun R (2004) Mismatch repair and DNA damage signalling. DNA Repair. 8-9:1091-101.
47. Stohs S, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–36 .
48. Tapio S, Grosche B (2006) Arsenic in the aetiology of cancer. Mutat. Res .612, 215–246.
49. Wang J. Moore M (2002) A review of animal models for the study of arsenic carcinogenesis. . Toxicol. Lett. 7 (133), 17-31.
50. Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem. 222(1-2), 3-9.
51. Wang F, Zhou F (2013) Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly (ADP-ribose) polymerase-1. Free Rad. Biol. Med. 61, 249–256.
52. Wei D, Laurie G (2008) As (III) inhibits ultraviolet radiation-induced cyclobutane pyrimidine dimers repair via generation of nitric oxide in human keratinocytes Free Rad. Biol. Med. 45, 1065-72.
53. Wu F, Rossman T (2005) Arsenite-induced alterations of DNA photodamage repair and apoptosis after solar-simulation UVR in mouse keratinocytes in vitro. Environ. Health Perspect. 113(8), 983-986.
54. Wu M, Chiou Y (2001) Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ Health Perspect. 109(10), 1011-1017.
55. Yih L, Huang H (2002) Sodium arsenite induces ATP depletion and mitochondrial damage in HeLa cells. Cell Biol. Int. Rep. 3, 253-264.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top