|
1. Michalak, L.; Fisher, K. J.; Alderdice, D. S.; Jardine, D. R.; Willett, G. D. C60-assisted laser desorption-ionization mass spectrometry. Org. Mass Spectrom. 1994, 29, 512-515. 2. Rusling, J. F.; Kumar, C. V.; Gutkind, J. S.; Patel, V. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 2010, 135, 2496-2511. 3. Gedda, G.; Pandey, S.; Bhaisare, M. L.; Wu, H.-F. Carbon dots as nanoantennas for anti-inflammatory drug analysis using surface-assisted laser desorption/ionization time-of-flight mass spectrometry in serum. RSC Adv. 2014, 4, 38027-38033. 4. Chen, S.; Chen, L, Wang, J.; Hou, J.; He, Q.; Liu , J. Wang, J. Xiong, S. X.; Yang, G. Q.; Nie, Z. G. 2,3,4,5-Tetrakis(3’,4’-dihydroxylphenyl)thiophene: A New Matrix for the Selective Analysis of Low Molecular Weight Amines and Direct Determination of Creatinine in Urine by MALDI-TOF MS. Anal Chem. 2012, 84, 10291-10297. 5. Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299-2301. 6. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153. 7. Mirkin, C. A. Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks. Inorg. Chem. 2000, 39, 2258-2272. 8. Chiang, C. -K.; Chen, W. -T.; Chang, H. -T. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 2011, 40, 1269-1281. 9. Stolee, J. A.; Walker, B. N.; Zorba, V.; Russo, R. E.; Vertes, A. Laser–nanostructure interactions for ion production. Phys. Chem. Chem. Phys. 2012, 14, 8453-8752. 10. Liao, P.-C.; Allison, J. Ionization processes in matrix-assisted laser desorption/ionization mass spectrometry: Matrix-dependent formation of [M + H]+ vs [M + Na]+ ions of small peptides and some mechanistic comments. J. Mass Spectrom. 1995, 30, 408-423. 11. Zenobi, R.; Knochenmuss, R. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 1998, 17,337-366. 12. Hashimoto, S.; Werner, D.; Uwada, T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication J. Photochem. Photobiol. C-Photochem. Rev. 2012, 13, 28-54. 13. Werner, D.; Hashimoto, S. Improved Working Model for Interpreting the Excitation Wavelength- and Fluence-Dependent Response in Pulsed Laser-Induced Size Reduction of Aqueous Gold Nanoparticles. J. Phys. Chem. C. 2011, 115, 5063-5072. 14. Shoji, M.; Miyajima, K.; Mafuné, F. Ionization of gold nanoparticles in solution by pulse laser excitation as studied by mass spectrometric detection of gold cluster ions. J. Phys. Chem. C. 2008, 112, 1929-1932. 15. Kinumi, T.; Saisu, T.;Takayama, M.; Niwa, H. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J. Mass Spectrom. 2000, 35, 417-422. 16. Hua, Y.; Dagan, S.; Wickramasekara, S.; Boday, D. J.; Wysocki, V. H. Analysis of deprotonated acids with silicon nanoparticle-assisted laser desorption/ ionization mass spectrometry. J. Mass Spectrom. 2010, 45, 1394-1401. 17. Duffy, M. J.; Lamerz, R.; Haglund, C.; Nicolini, A.; Kalousová, M.; Holubec. L.; Sturgeon, C. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int. J. Cancer 2014, 134, 2513–2522. 18. Wu, G.G.; Datar, R. H.; Hansen, K. M.; Thundat, T.; Cote, R. J.; Majumdar.A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 2001, 19, 856-860. 19. Keefe, A. D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nature Reviews Drug Discovery 2010, 9, 537-550. 20. Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 2015, 71, 230-242. 21. Gan, S. D.; Patel, K. R. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J. Investig. Dermatol 2013, 133, 1-3. 22. Zhang, J., Bowers, J., Liu, L., Wei, S., Gowda, G. A. N., Hammoud, Z., Raftery D. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLos One 2012, 7, 1-10. 23. Duncan, M. W.; Nedelkov, D.; Walsh, R.; Hattan, S. J. Applications of MALDI Mass Spectrometry in Clinical Chemistry. Clin. Chem. 2016, 62, 134-143. 24. Kudina, O.; Eral, B.; Mugele, F. e‑MALDI: An Electrowetting-Enhanced Drop Drying Method for MALDI Mass Spectrometry. Anal. Chem. 2016, 88, 4669−4675. 25. Guinan, T.; Kirkbrid, P.; Ronci, M.; Kobus, H.; Voelcker, N. H. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrom. Rev. 2015, 34, 627-640. 26. Liu, Q.; He L. Ionic matrix for matrix-enhanced surface-assisted laser desorption ionization mass spectrometry imaging (ME-SALDI-MSI). J. Am. Soc. Mass Spectrom. 2009, 20, 2229-2237. 27. Nierodzik, M. L.; Karpatkin, S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer cell 2006, 10, 355-362. 28. Bassus, S.; Herkert, O.; Kronemann, N.; Görlach, A.; Bremerich, D.; Kirchmaier, C. M.; Busse, R.; Schini-Kerth, V. B. Thrombin Causes Vascular Endothelial Growth Factor Expression in Vascular Smooth Muscle Cells: Role of Reactive Oxygen Species. Arteriosclerosis, Thrombosis, and Vascular Biology. 2001, 21, 1550-1555. 29. Jackson, A. L.; Davenport, S. M.; Herzog, T. J.; Coleman, R. L. Targeting angiogenesis: vascular endothelial growth factor and related signaling pathways. Transl. Cancer Res. 2015, 4, 70-83. 30. Ehnman, M.; Östman, A. Therapeutic targeting of platelet-derived growth factor receptors in solid tumors. Expert Opin. Invest. Drugs 2014, 23, 211-226. 31. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55-75. 32. So, Y.-H.; Chang, H.-T.; Chiu, W.-J.; Huang, C.-C. Graphene oxide modified with aptamer-conjugated gold nanoparticles and heparin: a potent targeted anticoagulant. Biomater. Sci. 2014, 2, 1332-1337. 33. Bigall, N. C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties. Nano Lett. 2008, 8, 4588-4592. 34. Bock, L. C.;Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. T. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1992, 355, 564-566. 35. Tasset, D. M.; Kubik, M. F.; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol., 1997, 272, 688-698. 36. Huang, S.-S.; Wei S.-C., Chang, H.-T.; Lin, H.-J.; Huang, C.-C. Gold Nanoparticles Modified with Self-Assembled Hybrid Monolayer of Triblock Aptamers as a Photoreversible Anticoagulant. Journal of Controlled Release 2016, 221, 9-17. 37. Cordray, M. S.; Amdahl, M.; Richards-Kortum, R. R. Gold nanoparticle aggregation for quantification of oligonucleotides: Optimization and increased dynamic range. Anal. Biochem. 2012, 431, 99-105. 38. Li, Y.-J.; Tseng, Y.-T.; Unnikrishnan, B.; Huang, C.-C. Gold-nanoparticles-modified cellulose membrane coupled with laser desorption/ionization mass spectrometry for detection of iodide in urine. ACS Appl. Mater. Interfaces 2013, 5, 9161-9166. 39. https://www.applichem.com/fileadmin/Broschueren/Transfermembran_e_Internet1.pdf; (accessed June 2016). 40. Cans, A.-S.; Dean, S. L.; Reyes, F. E.; Keating, C. D. Synthesis and characterization of enzyme-Au bioconjugates: HRP and fluorescein-labeled HRP. NanoBiotechnol. 2007, 3, 12–22.
|