跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宣佑
研究生(外文):Chen, Hsuan-Yu
論文名稱:砷化銦/銻化鎵超晶格紅外線偵測器之元件特性及石墨烯作為紅外線透明導電電極之應用
論文名稱(外文):The Device Performances of InAs/GaSb Superlattice Photodetectors and the Application of Graphene for Transparent Electrodes in the Infrared Range
指導教授:林時彥
指導教授(外文):Lin, Shih-Yen
口試委員:黃智賢林泰源林時彥
口試委員(外文):Hwang, Jih-ShangLin, Tai-YuanLin, Shih-Yen
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:69
中文關鍵詞:紅外線偵測器超晶格銻化鎵砷化銦石墨烯
外文關鍵詞:infrared photodetectorsuperlatticeGaSbInAsgraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們研究了以30層的型態二砷化銦/銻化鎵超晶格紅外線偵測器為標準,改變其元件之成長結構作一系列光電特性比較。超晶格結構之改變影響了偵測器之光電特性,從改變砷化銦之厚度、i層之厚度以及n型導電層之厚度對於偵測波段及光電特性之影響。而為了使紅外線偵測器得以運用於長波長偵測波段,我們將砷化銦之厚度由5 MLs增加至10 MLs,其元件於10 K環境下之頻譜響應量測結果顯示,截止波段由4.2微米推延至6.3微米,但與此同時元件單位頻譜響應強度由13.03衰退至0.279 mA/W。為了解決近乎50倍幅度的衰退,我們首先試著改變元件結構之i層未摻雜銻化鎵厚度以期降增加電子穿隧機率,i層未摻雜銻化鎵厚度由350奈米減少至50奈米,但結果顯示元件在單位頻譜響應強度並無明顯增強的情況下,暗電流相對增加,降低了元件之檢偵度而使得元件光電特性降低。再者我們嘗試將n型銻化鎵的電極及其一側之i層銻化鎵一併以砷化銦作替換結果顯示10 K溫度下在於4微米的波長,由2.7 × 10^-4 A/W 增至1.8 × 10^-3 A/W,近乎10倍的頻譜響應強度增幅也帶來了較高的元件檢偵度。
為改善較大感光尺寸元件之光電特性不因感光尺寸增大而隨之下降,因此我們將大面積成長之石墨烯薄膜運用為此紅外線二極體之透明導電電極,我們期望載子的傳導路徑可以由原先周圍金屬電極所蒐集,改變為直接垂直傳導至石墨烯。而我們得到石墨烯有著近於鈦/金電極對p型摻雜之銻化鎵的介面接觸電阻值91.667 Ω,也有著大於95 % 的紅外線區間全波段寬帶穿透率,非常適合作為型態二砷化銦/銻化鎵超晶格紅外線偵測器以及其他紅外線偵測器的透明導電電極。實際上元件透過石墨烯做為元件之透明導電電極,我們觀察到大面積元件的表現提升,進一步地也觀察到元件在不同感光尺寸下皆同有著約10^9 cm.Hz^1/2/W的檢偵度,其相對應的檢偵度差異並不顯著,即載子傳輸路徑的差異問題即已消弭。

In this thesis, a series of investigation of optoelectronic characteristic is carried out through changes of structure based on 30-periods Type II InAs/GaSb superlattice infrared photodetectors. The changes of superlattice structure affect the optoelectronic characteristic of the detector. In order to expand the cut-off wavelength, the thickness of InAs was increased from 5 to 10 MLs. The responsivity shows that the cut-off wavelength was expanded from 4.2 m to 6.3 m. But at the same time, the resposivity value was dropped from 13.03 to 0.279 mA/W. In order to solve the 50-times degradation of the responsivity value, the thickness of the undoped GaSb layer is reduced from 350 to 50 nm to increase the electron tunneling probability. However, the results show that the reponsivity value has no significant improvement. Instead, the dark current has significantly increased and therefore, the thinner updopped GaSb layers led to poor detectivity of the photo-diodes. Then we tried to replace the n-GaSb layer by the n-InAs layer to eliminate the tunneling barrier for the photo-excited electrons. The results show that at the 10K environment, 4 μm detecting wavelength, the responsivity of 2.7 × 10^-4 increased to 1.8 × 10^-3 A/W. The detectivity value also enhanced for the magnitude of an order comparing with the former device at different measurement temperatures.
Although optical windows area shrinkage can significantly increase the responsivity values of the InAs/GaSb T2SL infrared photodetectors, large-area devices are still required for single-detector applications and light-emitting devices in the IR ranges. Therefore we utilized large-area graphene as the IR transparent electrodes, we expected that the carrier transport path would vertically collected by the graphene. We found that graphene acts as ohmic transparent electrode on the p-type GaSb substrates with the contact resistance of 91.667 Ω. Highly ultra-broadband transmittance > 95 % is also observed for graphene in the infrared light range. By applying graphene to the devices, we observed the performance improvement of large-area devices. Furthermore, we found out that the devices with graphene transparent electrode all have the detectivity values around 10^9 cm.Hz^1/2/W, the less difference in detectivity values for devices with different areas indicated that the path-dependent problem has been solved by using graphene as the transparent electrodes.

摘要 I
Abstract II
目次 Ⅲ
圖目次 VI
表目次 VIII
第一章 緒論 1
1-1介紹與實驗動機 1
1-2論文架構 5
第二章 元件製程及量測系統 11
2-1樣品結構製備 11
2-2製程流程 12
2-2-1定義平台 (Mesa definition) 12
2-2-2鈍化處理 (Passivation) 12
2-2-3金屬沉積 (Metal Deposition) 13
2-2-4元件封裝 (Device packaging) 14
2-3利用化學氣相沉積法成長大面積石墨烯 14
2-3-1銅箔清洗 (Clean) 14
2-3-2升溫 (Preheating) 14
2-3-3退火 (Annealing) 15
2-3-4成長 (Growth) 15
2-3-5降溫 (Cooling) 15
2-3-6成長結果 16
2-4石墨烯轉印 16
2-4-1塗佈高分子保護膜 16
2-4-2電解水之氣泡轉印法 16
2-4-3去除高分子保護膜 17
2-5氧電漿乾蝕刻製程 17
2-5-1光阻塗佈 18
2-5-2石墨烯蝕刻 18
2-6量測儀器介紹 19
2-6-1薄膜厚度輪廓測度儀 (Alpha stepper) 19
2-6-2快速傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 19
2-6-3化學氣相沉積系統 (Chemical Vapor Deposition system, CVD) 20
2-6-4氧電漿乾蝕刻系統 (O2 Plasma Dry Etching System) 20
2-6-5高解析共焦拉曼顯微鏡光譜儀 (High Resolution Confocal Raman Microscope, HR CRM) 21
第三章 砷化銦/銻化鎵超晶格紅外線偵測器之元件特性分析45
3-1改變砷化銦厚度對於元件特性之影響 45
3-2改變i層之厚度對於元件特性之影響 47
3-3改變n型導電層對於元件特性之影響 48
3-4結論 49
第四章 應用大面積石墨烯作為砷化銦/銻化鎵超晶格紅外線偵測器之透明導電電極之元件特性分析 55
4-1具石墨烯透明導電電極之砷化銦/銻化鎵超晶格紅外線偵測器 56
4-2 石墨烯運用於不同感光尺寸的型態二砷化銦/銻化鎵超晶格紅外線偵測器檢偵度之影響 57
4-3結論 58
第五章 結論 65

1. E. Towe and D. Pan, “Semiconductor quantum-dot nanostructures: their application in a new class of infrared photodetectors,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 3, pp. 408-421, 2000.
2. E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Appl. Optics, vol. 43, no. 21, pp. 4182-4188, 2004.
3. F. Szmulowicz, G. J. Brown, H. C. Liu, A. Shen, R. Wasilewski, and M. Buchanan, “GaAs/AlGaAs p-type multiple-quantum wells for infrared detection at normal incidence: model and experiment,” Proc. SPIE, vol. 4413 ,no. 2, pp. 293-306, 2001.
4. C. Chen, K. Choi, L. Rokhinson, W. Chang, and D. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett., vol. 75, no. 20, pp. 3210-3212, 1999.
5. S. Chakrabarti, A. et al., “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett., vol. 16, no. 5, pp. 1361-1363, 2004.
6. S.-Y. Lin, Y.-R. Tsai, and S.-C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7As blocking layer,” Appl. Phys. Lett., vol. 78, no. 18, pp. 2784-2786, 2001.
7. S.-F. Tang, et al., “High-temperature operation normal incident 256X256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photonics Technol. Lett., vol. 18, no. 8, pp. 986-988, 2006.
8. E. Plis, S. J. Lee, Z. Zhu, A. Amtout, and S. Krishna, “InAs/GaSb Superlattice Detectors Operating at Room Temperature,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 6, 2006.
9. E. A. Plis, “InAs-GaSb Type-II SLs Detectors,” Adv. Electron., vol. 2014, no. 246769, p. 1-12, 2014.
10. 施東權, “The Applications of Type-II InAs/GaSbSuperlattice Infrared Photo-Diodes in Thermal Images,” M.S. thesis, Dept. Opt. Photon., NCTU, TW, 2015.
11. A. K. Kulkarni, K. H. Schulz, T. S. Lim and M. Khan, "Electrical, optical and structural characteristics of indium-tin-oxide thin films deposited on glass and polymer substrates," Thin Solid Films., vol. 308-309, pp.1-7, 1999.
12. R. R. Nair, et al., “Fine Structure Constant Defines Visual Transparency of Graphene,” Science Tran. Medi., vol.320, no. 5881, p. 1308 , 2008.
13. A. K. Geim, and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, pp. 183-191, Mar. 2007.
14. 彭思翔, “Research of high refractive index transparent conducting Nb-doped TiO2 (TNO) films and its application on high reflection mirror,” M.S. thesis, Dept. Opt. Photon., NCU, TW, 2010.
15. Materials and Engineering Research Institute, Sheffield Hallam University. Spectroscopy Basic theory (1st ed.) [Online]. Available: https://www4.shu.ac.uk/research/meri/research/ftir-spectroscopy-basic-theory
16. 張家豪,等10人,《電漿源原理與應用之介紹》,物理雙月刊,2006年,廿八卷二期,440-451頁
17. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep., vol. 473, pp. 51-87, 2009.
18. A. C. Ferrari, and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B, vol. 61, no. 20, pp. 14095-14107, 2000.
19. I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, "Ultraviolet Raman microscopy of single and multilayer graphene," J. Appl. Phys., vol. 106, 043509, 2009.
20. A. C. Ferrari, et al., "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett., vol. 97, 187401, 2006.
21. R. Rehm, et al., “InAs/GaSb superlattice infrared detectors,” Infrared Phys. Techn., vol. 59, p. 6-11, 2013.
22. H. -A. Chen, T. -C. Shih, H. -Y. Chen, and S. -Y. Lin, “Enhanced responsivity and detectivity values of short 30-period InAs/GaSb type-II infrared photodetectors with reduced device areas”, Jpn. J. Appl. Phys., vol. 55, 04EH07, 2016.
23. Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the Graphene Work Function by Electric Field Effect”, Nano Lett., vol. 9, pp. 3430-3434, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top