跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾華庭
研究生(外文):Hung-Ting Chung
論文名稱:利用激發複合體共主體材料及熱活性延遲螢光放光材料製作高效率有機發光元件
論文名稱(外文):High-efficiecy OLEDs base on exciplex co-host and TADF materials
指導教授:洪文誼
指導教授(外文):Hung, Wen-Yi
口試委員:汪根欉張志豪
口試委員(外文):Wong, Ken-TsungChang, Chih-Hao
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:熱活性延遲螢光放光激發複合體磷光白光高效率有機發光二極體
外文關鍵詞:TADFexciplexPhosphorescenceWOLEDsHigh efficiencyOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文分成三個部分,第一部分我們將會介紹一系列激發複合體摻雜磷光發光機制的材料,而這個機制具有實現高效率磷光有機發光元件的潛力。在這發光機制中,以咔唑 ( carbazole ) 為結構主體的材料mCP及SimCP當作電子施體,與1,3,5-三嗪為結構主體的材料PO-T2T及oCF3-T2T當作電子受體形成具有高三重態能階的新穎激發複合體主體結構。從光學的角度來分析,激發複合體摻雜RGB三色磷光材料的元件中發現轉移能量過程中能量並沒有任何損失,結果證實使用激發複合體當作主體,發展出前所未有的高效率白光磷光元件,元件在1000 cd m−2時效率可以高達24% (56 lm W−1),而且驅動電壓只需要4V。

在第二部分,我們研究兩個熱活性延遲螢光放光材料(2-DMAC-DBTO、4-DMAC-DBTO)。在本論文中我們以2-DAMC-DBTO當作TADF客體材料或是以非摻雜的方式當作發光層,其元件效率分可以高達18.8%及10.6%。而透過TADF機制所合成的材料,我們可以運用在客體材料或是以非摻雜…等多個方向,達到高效率、簡化結構設計及降低成本的目的。

第三部分,我們透過更改化學結構改善已知的TADF客體材料4CZIPN(綠光)、4CZTPN(黃光),使光譜藍移。4CZIPN將結構上的一個CN替換成CF3 (4CZIPN-1-CF3)後,CIE座標從(0.26, 0.54) 移至 (0.23, 0.46)。而4CzTPN則是將兩個咔唑 (Carbazole) 移除形成材料2CZTPN,CIE座標也從(0.41, 0.56) 移至 (0.19, 0.38)。


In first part of the thesis, we report a series of exciplex forming co-host with phosphorescent dopant system has potential to realize highly efficient phosphorescent organic light emitting didoes (PhOLEDs). In this work, a novel exciplex forming co-host with high triplet energy level is developed by mixing 1,3,5-triazine based electron transporting materials, PO-T2T and oCF3-T2T, and carbazole-based hole transporting materials, mCP and SimCP. Photo-physical analysis shows that the energy transfer from the exciplex to RGB phosphorescent dopants are efficient without energy loss. As a result, an unprecedented high performance white PhOLED with the exciplex forming co-host is demonstrated, showing a maximum EQE of 24%, a maximum PE of 56 lm W−1, and low driving voltage of 4 at 1000 cd m−2, respectively.
In the second part, we study two thermally activated delayed fluorescent (TADF) emitters (2-DMAC-DBTO and 4-DMAC-DBTO). 2-DMAC-DBTO was reported either as the emitting dopant in a host or as the non-doped (neat) emitting layer to achieve high EL EQEs of up to 18.8% and 10.6% in OLEDs, respectively. The demonstration of both highly efficient doped and non-doped OLEDs from the same TADF emitter shall render it versatile for applications in different device configurations, for achieving high efficiency, device/fabrication simplification, and/or cost reduction.
In the third part, we modified the chemical structure of TADF green and yellow emitters (4CzIPN and 4CzTPN) to blue-shift PL spectra. The emission color of 4CzIPN can be tuned by introducing CF3 (4CZIPN-1-CF3) to blue-shift emission from CIE (0.26, 0.54) to (0.23, 0.46). The emission color of 4CzTPN can be tuned by cutting two carbazole group (2CZTPN) to blue-shift emission from CIE (0.41, 0.56) to (0.19, 0.38).


致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第一章、緒論 1
1-1 前言 1
1-2 有機發光二極體的簡介 1
1-3 論文架構 3
參考文獻 4
第二章、實驗步驟 5
2-1 緒論 5
2-2 有機材料的純化 5
2-3 光物理性質量測 5
2-4 載子遷移率量測 6
2-5 能階量測 6
2-6 光致放光之時間解析與量測 7
2-7 有機發光元件的製備與量測 7
參考文獻 9
第三章、利用激發複合體共主體製作高效率RGBW磷光有機發光元件 10
3-1 緒論 10
3-2 文獻回顧 10
3-3 學長進度 回顧 12
3-3.1 材料的介紹 12
3-3.2 元件表現 14
3-4 元件表現與討論 16
3-4.1 RGB三色磷光材料參雜 16
3-4.2 利用高效率RGB元件混成白光元件 20
3-5 結論 27
第四章、DMAC-DBTO系列材料當作參雜、非參雜以及PhOLEDs的主體運用 29
4-1 緒論 29
4-2 文獻回顧 29
4-3 有機材料的結構介紹及物理特性 31
4-4 元件製作、改善以及討論 35
4-4.1 DMAC-DBTO系列用於 non-doped 35
4-4.2 DMAC-DBTO系列用於Doped 45
4-4.3 DMAC-DBTO系列用於host 51
4-5 結論 55
第五章、改善TADF客體材料4CZIPN、4CZTPN結構並製作高效率發光元件 57
5-1 緒論 57
5-2 文獻回顧 57
5-3有機材料介紹 58
5-4 元件製作與討論 61
5-4-2 光譜探討 69
5-6 結論 69
參考文獻 70


1. E. Mondal, W.-Y. Hung, H.-C. Dai, K.-T. Wong, Adv. Funct. Mater. 2013, 23, 3096.
2. (a) Kondakov, D. Y. J. Appl. Phys. 2007, 102, 114504; (b) Kondakov, D. Y.; Pawlik, T. D.; Hatwar, T. K.; Spindler, J. P. J. Appl. Phys. 2009, 106, 124510; (c) King, S. M.; Cass, M.; Pintani, M.; Coward, C.; Dias, F. B.; Monkman, A. P.; Roberts, M. J. Appl. Phys. 2011, 109, 074502
3. (a) A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 2009, 21, 4802; (b) A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Appl. Phys. Lett. 2011, 98, 083302; (c) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 2012, 492, 234; (d) Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706; (e) G. Méhes, H. Nomura, Q. Zhang, T. Nakagawa, C. Adachi, Angew. Chem. Int. Ed. 2012, 51, 11311; (f) T. Nakagawa, S.-Y. Ku, K.-T. Wong, C. Adachi, Chem. Commun., 2012, 48, 9580.
4. (a) K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photon. 2012, 6, 253; (b) Goushi, K.; Adachi, C. Appl. Phys. Lett. 2012, 101, 023306; (c) Jankus, V.; Chiang, C.-J.; Dias, F.; Monkman, A. P. Adv. Mater. 2013, 25, 1455-1459.
5. J. C. de Mello, H. F. Wittmann and R. h. Friend, Adv. Mater. 9, 230 (1997).
6. X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan and A. J. Heeger, Adv. Mater. 14, 581 (2001).
7. M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. C. Wu, F. C. Fang, Y. L. Liao, K. T. Wong and C. I. Wu, Adv. Mater. 18, 1216 (2006).
8. J.C. Mello, H.F. Wittmann, and R.H. Friend, Adv. Mater. 9, 230(1997).
9. L.-O. Pålsson, A.P. Monkman, Adv. Mater. 14, 757(2002).
10. A. Sharma, B. Kippelen, P. J. Hotchkiss, and S. R. Marder, Appl. Phys. Lett. 93,
11. J. Salbeck, N. Yu, J. Bauer, F. Weissortel, and H. Bestgen, Synth. Met. 91, 209 (1997).
12. G. Jones II, W. R. Jackson, C. Y. Choi and W. R. Bergmark, J. Phys. Chem. 89, 294 (1985).
13. E. S. Hung , C. W. Tang and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
14. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, App. Phys. Lett. 98, 083302 (2011).
15. K. Shizu, H. Tanaka, M. Uejima, T. Sato, K. Tanaka, H. Kaji and C. Adachi, J. Phys. Chem. C. 119, 1291 (2015).
16. M. Gratzel, Nature. 414, 338(2001).
17. S. Welter, K. Brunner, J. W. Hofstraat, and L. De Cola, Nature. 421, 54(2003).
18. T. Noda, H. Ogawa and Y. Shirota, Adv. Mater. 11, 283 (1999)
19. J. Wang, Y. Kawabe, S. E. Shaheen, M. M. Morrell, G. E. Jabbour, P. A. Lee, J. Anderson, N. R. Armstrong, B. Kippelen, E. A. Mash and N. Peyghambarian, Adv. Mater. 10, 230 (1998).
20. C. Giebeler, H. Antoniadis, D. D. C. Bradley and Y. Shirota, J. Appl. Phys. 85, 608 (1999).
21. Y. Kawabe and J. Abe, Appl. Phys. Lett. 81, 493 (2002).
22. Tsai, Wei-Lung. Optical Society of America, 2015.S. L. Lai, M. Y. Chan, Q. X. Tong, M. K. Fung, P. F. Wang, C. S. Lee and S. T. Lee, Appl. Phys. Lett. 93, 143301 (2008).
23. K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photon. 6, 253 (2012).
24. W. Y. Hung, G. C. Fang, S. W. Lin, S. H. Cheng, K. T. Wong, T. Y. Kuo, and P. T. Chou, Sci Reports. 4, 5161(2014).
25. Chen, H. F., Wang, T. C., Lin, S. W., Hung, W. Y., Dai, H. C., Chiu, H. C., ... & Lee, C. C. J. Mater. Chem, 22,15620.(2012)
26. J. H. Lee, S. H. Cheng, S. J. Yoo, H. Shin, J. H. Chang, C. Wu, K. T. Wong, and J. J. Kim, Adv. Funct. Mater. 25, 361 (2015).
27. S. Liu, X. Jiang, H. Ma, M. S. Liu, A. K. Y. Jen, Macromolecules 33, 3514 (2000)
28. E. Mondal, W. Y. Hung, H. C. Dai and K. T. Wong, Adv. Funct. Mater. 23, 3096 (2013)
29. Y. L. Tung, S. W. Lee, Y. Chi, Y. Y. Tao, C. H. Chien, Y. M. Cheng, P. T. Chou, S. M. Peng, C. S. Liu, J. Mater. Chem. 15, 460 (2005)
30. C. H. Chen and C. W. Tang, Chemistry of Functional Dyes, Mita Press, Vol. 2, p, 536(1992).
31. J.-H. Lee , S.-H. Cheng, S.-J. Yoo, H. Shin, J.-H. Chang, C.-I. Wu, K.-T. Wong, and J.-J. Kim, Adv. Funct. Mater. 25, 361 (2015).
32. Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, F. Wang, Adv. Mater. 21, 2397 (2009)
33. M. S. Lin, , S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, ... & K. T. Wong, J. Mater. Chem, 22,16114.(2012).
34. W.L.Tsai,.In Optical Nanostructures and Advanced Materials for Photovoltaics (pp. JTu5A-4). Optical Society of America. (2015)
35. J.-H. Lee , S.-H. Cheng, S.-J. Yoo, H. Shin, J.-H. Chang, C.-I. Wu, K.-T. Wong, and J.-J. Kim, Adv. Funct. Mater. 25, 361 (2015).
36. Y. L. Tung, S. W. Lee, Y. Chi, Y. T. Tao, C. H. Chien, Y. M. Cheng, P. T. Chou, S. M. Peng and C. S. Liu, J. Mater. Chem. 15,460 (2005)
37. S. J. Su, H. Sasabe, T. Takeda and J. Kido, Chem. Mater. 20, 1691 (2008)
38. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl.Phys. 90, 5048 (2001)
39. H. Uoyama, K. Goushi, K. Shizu, H. Nomura&C. Adachi... Nature,492, 234. (2012)
40. Y. H.Kim, C. Wolf, H.Cho, S. H. Jeong, & T. W. Lee. Advanced Materials. (2015)
41. T. Furukawa, H. Nakanotani,, M. Inoue,, & Adachi, C. Scientific reports, 5, 8429 (2015).
42. A. S. Sandanayaka, T. Matsushima, & C. Adachi,. J. Phys. Chem. C,119, 23845(2015)
43. M. S. Lin, , S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, ... & K. T. Wong, J. Mater. Chem, 22,16114.(2012).
44. J.-H. Lee , S.-H. Cheng, S.-J. Yoo, H. Shin, J.-H. Chang, C.-I. Wu, K.-T. Wong, and J.-J. Kim, Adv. Funct. Mater. 25, 361 (2015).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top