跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許玄燁
研究生(外文):Hsu, Hsuan-Yeh
論文名稱:雙層奈米鋁金屬狹縫陣列的製作與應用
論文名稱(外文):Fabrication of capped aluminum nano-slit arrays and its applications
指導教授:魏培坤
指導教授(外文):Wei, Pei-Kuen
口試委員:江海邦鄭郅言吳錫樹
口試委員(外文):Chiang, Hai-PangCheng, Ji-YenWu, Hsi-Shu
口試日期:2016-07-06
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:表面電漿子共振奈米壓印技術光學生物感測器非標定性
外文關鍵詞:Surface plasmon resonanceNanoimprintingOptical biosensorsLabel free
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
奈米金屬結構型態的表面電漿子共振感測器具有非標定、及時性及高通量檢測的特性,已被應用在化學及生物感測上。然而,發展大量製作低成本、高靈敏度奈米金屬結構感測器的技術是重要的研究議題,由於鋁金屬價格便宜、金屬特性相對穩定,因此,近年來鋁金屬結構感測器的相關研究有增加的趨勢。在本論文中,我們提出使用直接加壓式奈米壓印技術製作雙層鋁奈米金屬狹縫感測晶片並研究結構參數對結構光學特性及表面膜厚靈敏度的影響,同時進行鋁晶片的耐受性測試及牛血清蛋白及抗牛血清蛋白結合實驗來驗證晶片的穩定性及感測能力。實驗中使用電子束微影技術製作具有奈米溝槽的矽母模並利用奈米壓印(Nanoimprinting)技術將矽母模上的奈米結構轉印到環烯烴共聚合物塑膠膜上,再蒸鍍一層金屬膜於結構上,完成奈米金屬結構的製作。實驗結果顯示當橫向磁場模態極化波正向入射金屬結構,狹縫中產生的寬頻寬共振膜態與表面電漿子共振膜態耦合,在穿透光譜出現一陡峭且非對稱的菲諾共振,其共振波峰半高寬約為4.8 nm,就我們所知,這個頻寬是目前眾鋁金屬結構中最窄的記錄值。此外,我們也發現金屬厚度改變兩膜態的耦合效率,當鋁金屬厚度由20 nm增加至80 nm,共振現象由共振波峰變成共振波谷。在表面厚度靈敏度測試中,使用原子層沈積法沈積不同厚度的氧化鋁於結構上並比較不同週期(470 nm至600 nm)及厚度(20 nm至80nm)雙層鋁(銀)奈米金屬狹縫結構的表面厚度靈敏度,結果顯示隨著週期長度的減短,表面厚度靈敏度增加1倍多,而週期470 nm銀及鋁金屬結構的靈敏度分別為1.57及1.34 (nm/nm)。當金屬厚度由20 nm增加至80nm時,厚度60nm有較高的表面厚度靈敏度(3.034 nm/nm),與厚度20 nm相較,其提升2倍。而在強度分析法中,鋁金屬結構的表面厚度靈敏度為61.18 %/nm,在系統雜訊條件下(2.44%),其厚度偵測極限為0.4 Å。另一方面,在折射率靈敏度測試中,其強度靈敏度高達29345.05%/RIU,當強度雜訊為(2.14%)時,其折射率檢測極限為7.310-5RIU。在鋁晶片的耐受性測試中,結果顯示經氧電漿處理後的鋁晶片相當穩定,能在磷酸緩衝生理食鹽水(Phosphate buffered saline,PBS)和4-羥乙基哌嗪乙磺酸(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid,HEPES)等緩衝溶液中使用而不受影響並可在常溫常壓環境存放至少一個月以上。在牛血清蛋白及抗牛血清蛋白結合實驗中,隨著抗牛血清蛋白濃度的增加,共振波峰產生紅移並在高濃度條件下,位移量呈現飽和,在目前系統雜訊條件下(1.1973%),結構的偵測極限為17pg/mL。我們相信此低成本、高靈敏度的雙層鋁奈米金屬狹縫感測晶片將有益於後續更多的檢測應用。
Nanostructure-based surface plasmon resonance sensors are capable of sensitive, real-time, label-free, and multiple-point detection for chemical and biomedical applications. However, highly sensitive plasmonic sensors with high-throughput and low-cost fabrication techniques are the main issues which should be addressed. Recently, the studies of nanostructure-based aluminum sensors have attracted a large attention because aluminum is a more cost-effective plasmonic material and relatively stable. In this study, we utilized hot embossing nanoimprint lithography to fabricate aluminum capped nanoslits and study the effects of the structure parameters on the optical properties and surface (thickness) sensitivities. Besides, chemical durability tests and biointeractions between bovine serum albumin (BSA) and anti-BSA were conducted to verify the sensing capability and stability of the biochips. Silicon molds with nanogrooves were made using electron beam lithography and a reactive ion etching method. The metallic nanostructures were produced on a polycarbonate (PC) substrate using hot embossing nanoimprint lithography and thermal evaporation. The results show that a transverse-magnetic (TM) polarized wave in capped aluminum nanoslits generated extremely sharp and asymmetric Fano resonances in transmission spectra. These resonances were caused by the couplings of cavity resonances in nanoslits and Bloch wave surface plasmon polaritons (BW-SPPs) on both sides of the periodic aluminum surface. The narrowest bandwidth of the Fano resonance in air environment was 4.8 nm. To the best of our knowledge, it is the narrowest bandwidth observed in aluminum nanostructures. Besides, we also found that the metal thickness affected the coupling efficiency between the two resonance modes. When the metal thickness increased from 20 to 80 nm, a resonance peak in the spectrum was gradually changed to a resonance dip. We further compared the surface sensitivities of the aluminum (silver) capped nanoslits with different periods (470-600 nm) and metal thicknesses (20-80 nm) by depositing different thicknesses of atomic layer deposition Al2O3 films. The results show that the surface (thickness) sensitivity was improved by a factor of 1.6 with the decrease of the period. The thickness sensitivities were 1.57 and 1.34 (nm/nm) for 470-nm-period sliver and aluminum nanostructures, respectively. Compared to the nanostructures with other thicknesses (20-80 nm), the nanostructure with a thickness of 60 nm had a higher thickness sensitivity (3.034 nm/nm). The sensitivity was improved by a factor of 2 when the thickness increased from 20 to 60 nm. With intensity interrogation, the thickness sensitivity of the aluminum nanostructures was 61.18 %/nm. For the current noise (2.44 %), the limit of detection of the Al2O3 film thickness was 0.4 Å. On the other hand, for the refractive index sensitivity tests, the nanostructure had a high intensity sensitivity up to 29345.05%/RIU. If the intensity stability is 2.14%, the refractive index detection limit was 7.310-5 RIU. For the chemical durability tests, the aluminum chips with the oxygen plasma treatment were stable in the Phosphate buffered salin (PBS) and 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer solutions and in normal temperature and pressure environment for at least 1 months. We also studied the biointeractions between between BSA and anti-BSA to verify the sensing capability. When the concentration of anti-BSA increased, the peak wavelength shift increased and then gradually saturated. For the current system noise (1.1973%, standard deviations of the response), the limit of detection of the concentration of anti-BSA was 17 pg/ml. We believe that such highly sensitive and low-cost aluminum capped nanoslits can benefit sensing applications.
誌謝 II
摘要 III
Abstract IV
目錄 VI
第一章 序論 1
1.1 研究背景 1
1.2研究動機與目的 5
第二章 表面電漿共振之理論 6
2.1 表面電漿子共振簡介 6
2.2 表面電漿子共振原理 6
2.3 狹縫表面電漿子激發與與激發共振模態 12
第三章 實驗設備與製程流程 18
3.1 電子束微影技術簡介 18
3.2 反應式離子蝕刻技術簡介 20
3.3 奈米壓印技術 21
3.3.1 氣壓式奈米壓印機 21
3.3.2 直接加壓式奈米壓印技術 23
3.4 鍍膜設備 24
3.4.1 熱蒸鍍系統 24
3.4.2直流式真空濺鍍系統 25
3.4.2原子層沉積系統 26
3.5 光學量測系統 27
3.5.1穿透式光譜量測系統 27
3.6金屬奈米結構晶片製備流程 29
3.6.1金屬奈米結構晶片製備流程 29
3.7金屬奈米結構晶片保護 33
3.7.1晶片保護 33
3.7.2晶片修飾 34
3.7.3晶片檢測流程 37
第四章 實驗結果與討論 38
4.1週期性雙層鋁與銀奈米狹縫晶片的測試比較 38
4.2晶片的耐受性測試 46
4.3雙層鋁奈米狹縫晶片的靈敏度測試 50
4.4乾式檢測 牛血清蛋白 62
第五章 結論與未來展望 66
第六章 參考文獻 68

1. Rich, R.L. and D.G. Myszka, Survey of the year 2004 commercial optical biosensor literature. Journal of Molecular Recognition, 2005. 18(6): p. 431-478.
2. Shankaran, D.R., K.V. Gobi, and N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 2007. 121(1): p. 158-177.
3. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1): p. 3-15.
4. Ulrich, R. and R. Torge, Measurement of thin film parameters with a prism coupler. Applied Optics, 1973. 12(12): p. 2901-2908.
5. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics reports, 2005. 408(3): p. 131-314.
6. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,”Sens Actuators B, Vol. 54, pp. 3–15, 1999.
7. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett., Vol. 21, pp.1530-1533,1968.
8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin, 1988.
9. G. Gauglitz, “Opto-chemical and opto-immuno sensors,” sensor update, Vol. 1,VCH, Weinheim, 1996.
10.A.L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, “Immunosensors: electrochemical sensing and other engineering approaches,” Biosens Bioelectron,Vol. 13, pp. 113–131, 1998.
11.X. Chu, Z.H. Lin, G.L. Shen, and R.Q. Yu, “Piezoelectric immunosensor for the detection of immunoglobulin M,” Analyst, Vol. 120, pp. 2829–2832, 1995.
12.Liedberg, B., C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing", Sensors and Actuators, 4(0): p. 299-304 (1983)
13.Homola, J., "Present and future of surface plasmon resonance biosensors", Analytical and Bioanalytical Chemistry, 377(3): p. 528-539 (2003)
14.MacBeath, G. and S.L. Schreiber, "Printing Proteins as Microarrays for High-Throughput Function Determination", Science, 289(5485): p. 1760-1763 (2000)
15.Hu, W.P., et al., "A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film", Biosensors and Bioelectronics, 19(11): p. 1465-1471 (2004)
16.Ebbesen, T.W., et al., "Extraordinary optical transmission through sub-wavelength hole arrays", Nature, 391(6668): p. 667-669 (1998)
17.Brolo, A.G., et al., "Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films", Langmuir, 20(12): p. 4813-4815 (2004)
18.Lee KL, Wei PK. Enhancing surface plasmon detection using ultrasmall nanoslits and a multispectral integration method. Small. 2010;6(17):1900-7.
19.Lee, K.-L., et al., Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. Acs Nano, 2012. 6(4): p. 2931-2939.
20.Austin, M.D., et al., Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004. 84(26): p. 5299-5301.
21.Hua, F., et al., Polymer imprint lithography with molecular-scale resolution. Nano letters, 2004. 4(12): p. 2467-2471.
22.Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 1941. 31(3): p. 213-222.
23.Kretschmann, E. and H. Raether, Radiative decay of non radiative surface plasmons excited by light(Surface plasma waves excitation by light and decay into photons applied to nonradiative modes). Zeitschrift Fuer Naturforschung, Teil A, 1968. 23: p. 2135.
24.Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik, 1968. 216(4): p. 398-410.
25.Gordon, R., Light in a subwavelength slit in a metal: Propagation and reflection. Physical Review B, 2006. 73(15): p. 153405.
26.Cao, Q. and P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Physical Review Letters, 2002. 88(5): p. 057403.
27Moreau, A., et al., Enhanced transmission of slit arrays in an extremely thin metallic film. Journal of Optics A: Pure and Applied Optics, 2007. 9(2): p. 165.
28.Lalanne, P., J. Rodier, and J. Hugonin, Surface plasmons of metallic surfaces perforated by nanohole arrays. Journal of Optics A: Pure and Applied Optics, 2005. 7(8): p. 422.
29.Hessel, A. and A. Oliner, A new theory of Wood’s anomalies on optical gratings. Applied Optics, 1965. 4(10): p. 1275-1297.
30.Carlos A ,B , et al., Aluminum Nanoholes for Optical Biosensing. Biosensors 2015, 5, 417-431; doi:10.3390/bios5030417
31.Susan Y. Tseng, et al., Glycan Arrays on Aluminum-Coated Glass Slides, DOI: 10.1002/asia.200800154
32.Yongkang Gao, Zheming Xin, Qiaoqiang Gan, Xuanhong Cheng, and Filbert J. Bartoli1. Plasmonic interferometers for label-free multiplexed sensing. OSA OPTICS EXPRESS. 2013;21(5):5859
33.洪嘉佑, "表面電漿共振及表面增強拉慢散設雙重檢測感測器之開發與應用", 國立台灣大學機械工程學研究所碩士論文 (2015)
34.游孟霖, "發展肉眼檢視型奈米電漿子生物晶片進行農藥殘留檢測",國立陽明大學生醫光電研究所碩士論文 (2014)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊