跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭蕙娟
研究生(外文):CHENG, HUI-CHUAN
論文名稱:基於慣性感測器之步態動作捕捉系統
論文名稱(外文):Inertial Sensor Based Gait Motion Capture System
指導教授:楊棧雲楊棧雲引用關係
指導教授(外文):YANG, CHANG-YUN
口試委員:楊棧雲紀明慧黃有評鄭智修乎曼薩馬尼
口試委員(外文):YANG, CHANG-YUNJI, MING-HUIHUANG, YO-PINGCHENG, CHIH-HSIUHooman Samani
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:89
中文關鍵詞:慣性感測元件步態分析四元數擴展卡爾曼濾波器座標轉換
外文關鍵詞:Inertial SensorsGait AnalysisQuaternion Extended Kalman FilterCoordinate Transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
步行、走路支持人們生命十分可貴,通過步態的調查,一方面可藉以提升足部醫學的科技研究,另一方面可作為下肢矯正手術的評估參考,對於復健醫學是重要的研究手段。步態分析以下肢各關節角度變化為基礎,其最基本工具大致是為影像動態捕捉系統與測力板,其中影像動態捕捉系統普遍為大眾接受,是一精確、可靠的系統,惜有量測範圍的限制。近年越來越多人使用感測器結合各式濾波器發展一步態分析系統,但其系統可靠性與準確性沒有統一的標準。本論文因結合慣性感測元件結合座標轉換與卡爾曼濾波器等計算科學發展一步態動作捕捉系統。將慣性感測元件綁定於測試者下肢,透過藍芽與Wifi來控制及傳輸資料,並利用四元數擴展卡爾曼濾波器,來消除偏移、漂移,及區域座標軸向問題,計算在髖關節、膝關節、以及足踝關節之步態角度。並實作與PTI影像標記式動態追蹤系統相互比較校正,實驗結果顯示所提議的系統具一定的有效性及可靠度。
Gait analysis is not only important in the use for research of locomotion but also substantially related to the rehabilitations or surgical treatments of patients who have lower limb disorders. The analysis is generally based on the kinetic information which has been collected during the patients' locomotion. A traditional method to acquire the kinetic information relies seriously on a multiple-camera based system which calculates and converts video-marker positions inside the independently multi-dimensional videos to the exact positions. Due to limitation of the camera viewing scope, the markers have to be initially calibrated first before use, and the patients' locomotion also have to be restricted within a limited region which all the camera viewing scope can cover. In this study, a wireless wearable gait motion capture system has been proposed to substitute the video-based method. By a series of inertial sensors attached to the human body, measurements based on the embodiment of the inertial sensors are acquired to estimate the kinetics of the locomotion. The motion capture system is no more restricted in a local area. For gait pattern assessment, a Quaternion Extended Kalman Filter (QEKF), which transforms the sensor measures from a local coordinate to the global coordinate, and removes sensory noises, is used for the kinetic assessment. Together with the QEKF, a new method to align the baseline of calculation is proposed, and is a key to achieve the performance. By wearing on the thighs, shanks and feet of a person, the sensors with their triaxial accelerometer measure and the inclination angle of the segments to calculate lower extremity joint (either hips, knees or ankles of both legs) angle. The time series of inclination angles of the hips, knees and ankles then form the gait patterns of the person. In the developing stage, the system is developed under the reference and calibration of the simultaneous gait pattern acquired by a PTI motion tracking system to obtain a reliable model accuracy. After the development, repeated experiments and long-distance outdoor locomotion tests were applied for verification and validation to guarantee the system performance.
誌 謝 I
中文論文摘要 II
英文論文摘要 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒 論 1
1-1 研究動機與目的 2
1-2 文獻探討 3
1-2-1步態分析系統 3
1-2-2慣性感測元件之濾波器 4
1-3 本論文架構 6
第二章 研究原理與基礎 8
2-1 慣性感測單元原理 8
2-1-1 加速計原理 8
2-1-2 陀螺儀原理 12
2-1-3 磁針計原理 16
2-2 座標系統 17
2-2-1 區域 V.S. 全域之量測 18
2-2-2 座標轉換 20
2-3 姿態標記法 23
2-3-1 四元數 24
2-4 卡爾曼濾波器 26
2-4-1 簡單卡爾曼濾波器 27
2-4-2 擴展卡爾曼濾波器 32
第三章 系統建模 35
3-1 標準步態 35
3-2 步態角度計算 37
3-2-1 傾角 37
3-2-2 各關節角度量測 41
3-3 加速度值計算程序 46
3-3-1 四元數擴展卡爾曼濾波器 48
3-3-2 簡單移動平均 55
3-3-3 加速度值計算程序之系統參數 56
第四章 系統架構 57
4-1 研究流程 57
4-2 研究軟體硬體配置 58
4-2-1 研究設備及材料 60
4-3 PTI影像標記式動態追蹤參考系統 61
第五章 實驗與討論 63
5-1 步態動作捕捉系統與PTI影像標記式動態追蹤系統相比 63
5-2 五十次的歩態周期堆疊之軌跡驗證 71
5-3 連續二十個歩態之規律性驗證 79
第六章 結論 84
6-1結論 84
6-2未來計畫與發展 84
參考文獻 85

[1]M. W. Whittle, “Clinical gait analysis: a review,” Human Movement Science, vol. 15, no. 3, 1996, pp.369–387.
[2]陸哲駒, “From clinical observation to gait analysis: computerized and clinical assessment,” Union symposium, Taiwan, 2013.
[3]M. P. Kadaba, H. K. Ramakrishnan and M. E. Wootten, “Measurement of lower extremity kinematics during level walking,” Journal of Orthopaedic Research, vol. 8, no. 3, 1990, pp.383–392
[4]D. M. Gavrila, L. S. Davis, “3-D model-based tracking of humans in action: a multi-view approach,” Proceedings of the IEEE Computer Vision and Pattern Recognition, San Francisco, CA, 1996, pp.73–80.
[5]C. Cho, Y. Osaki, M. Kunin, B. Chen, C. W. Olanow and T. Raphan, “A model-based approach for assessing parkinsonian gait and effects of levodopa and deep brain stimulation,” Proceedings of the IEEE 28th Annual International Conference on Engineering in Medicine and Biology Society, New York, NY, 2006, pp.1228–1231.
[6]S. J. M. Bamberg, A. Y. Benbasat, D. M. Scarborough, D.E. Krebs and J. A. Paradiso, “Gait analysis using a shoe-integrated wireless sensor system,” IEEE Trans. Inf. Technol. Biomed, vol. 14, no. 4, 2008, pp.413–423.
[7]T. Liu, Y. Inoue and K. Shibata, “Development of a wearable sensor system for quantitative gait analysis,” Measurement, vol. 42, no. 7, 2009, pp.978–988.
[8]W. Tao, T. Liu, R. Zheng and H. Feng, “Gait analysis using wearable sensors,” Sensor, vol. 12, no. 2, 2012, pp.2255–2283.
[9]M. N. Nyana, F. E. H. Tay and E. Murugasu, “A wearable system for pre-impact fall detection,” Journal of Biomechanics, vol. 41, no. 16, 2008, pp.3475–3481
[10]R. Takeda, S Tadano, M. Todoh, A. Natorigawa, M Todoh, and S Yoshinari. “Gait analysis using gravitational acceleration measured by wearable sensors,” Journal of Biomechanics, vol. 42, no. 3, 2009, pp.223–233.
[11]D. Roetenberg, P. J. Slycke and P. H Veltink, “Ambulatory position and orientation tracking fusing magnetic and inertial sensing,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 5, 2007, pp.883–890.
[12]H. J. Luinge, P. H. Veltink, ”Measuring orientation of human body segments using miniature gyroscopes and accelerometers,” Medical and Biological Engineering and Computing, vol. 43, no. 2, 2005, pp.273–282.
[13]R. Takeda, G. Lisco, T. Fujisawa, L. Gastaldi, H, Tohyama and S. Tadano, “Drift removal for improving the accuracy of gait parameters using wearable sensor systems,” Sensor, vol. 14, no. 12, 2014, pp.23230–23247.
[14]Autonomous, “AHRS,” Wikipedia, , Dec. 2015.
[15]Y. Teruyama and T. Watanabe, “Effectiveness of variable-gain kalman filter based on angle error calculated from acceleration signals in lower limb angle measurement with inertial sensors,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 398042, 12 pages, 2013.
[16]G. Ligoriom, A. M. Sabatini, “Extended kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation,” Sensor, vol. 11, no. 10, 2011, pp.9182–9206.
[17]L. Wang, Z. Zhang and P. Sun, “Quaternion-based kalman filter for ahrs using an adaptive-step gradient descent algorithm,” International Journal of Advanced Robotic Systems, vol. 12, 2015, pp.131–142
[18]V. Beroulle, Y. Bertrand, L. Latorre and P. Nouet, “Monolithic piezoresistive CMOS magnetic field sensors,” Sensors and Actuators A: Physical, vol. 103, no. 1-2, 2003, pp.23–32.
[19]Z. Kádár, A. Bossche, P. M. Sarro and J. R. Mollinger, “Magnetic-field measurements using an integrated resonant magnetic-field sensor,” Sensors and Actuators A: Physical, vol. 70, no. 3, 1998, pp.225–232.
[20]R. Sunier, T. Vancura, Y. Li and K. U. Kirstein, “Resonant magnetic field sensor with frequency output,” Journal of Microelectromechanical Systems, vol. 15, no.5, 2006, pp.1098–1107.
[21]S. Brugger, P. Simon and O. Paul, “Field concentrator based resonant magnetic sensor,” Conference on Sensors, Daegu, 2006, pp.1016–1019.
[22]F. Keplinger, S. Kvasnica, A. Jachimowicz, F. Kohl, J.s Steurer and H. Hauser, “Lorentz force based magnetic field sensor with optical readout,” Sensors and Actuators A: Physical, vol. 110, no. 1-3, 2003, pp.112–118.
[23] “何謂步態分析”, Available<http://140.116.60.95/~mark/mo-ana.htm>, 10 July 2015.
[24]科技部, “電腦輔助動態分析的醫學應用”, Available <http://www.most.gov.tw/ctpda.aspx?xItem=7871&ctNode=76&mp=8>, 10 July 2015.
[25]J. Perry, “Gait analysis: normal and pathological function,” Thorofare, New Jersey: SLACK, 1992.
[26]M. P. Kadaba, H. K. Ramakrishnan and M. E. Wootten, ” Measurement of lower extremity kinematics during level walking,” Journal of Orthopaedic Research, vol. 8, no. 3, 1990, pp.383–392
[27]R. Takeda, S. Tadano, A. Natorigawa, M. Todoh, S and Yoshinari “Gait posture estimation using wearable acceleration and gyro sensors,” Journal of Biomechanics, vol. 42, no. 15, 2009, pp.2486–2494.
[28]“Phoenix Technologies Inc.” Available < http://www.ptiphoenix.com/ >, 17 June 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top