跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威霖
研究生(外文):V-Liam Chin
論文名稱:玻璃纖維包覆螺紋管圍束鋼筋混凝土圓柱剪力設計與實驗驗證
論文名稱(外文):Shear Strength Design and Tests of Circular Reinforced Concrete Columns Confined with a FRP-Wrapped Spiral Corrugated Tube
指導教授:周中哲李中生李中生引用關係
指導教授(外文):Chung-Che ChouChung-Sheng Lee
口試委員:宋欣泰劉俊秀
口試委員(外文):Shin-Tai SongGin-Show Liou
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:144
中文關鍵詞:玻璃纖維螺紋管圍束混凝土RC柱剪力強度
外文關鍵詞:GFRPSpiral Corrugated TubeConfined concreteRC columnsShear strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This study is conducted to investigate the shear strength of FRP-Wrapped Spiral Corrugated Tube (FWSCT) confined circular concrete columns. In order to study the shear strength of the Spiral Corrugated Tube and the FRP jacket, two shear strength models (UCSD shear model and residual shear model) are adopted in this analytical procedure.
In this experimental program, two FRP-Wrapped Spiral Corrugated Tube (FWSCT) Circular Concrete Columns with different amount of FRP confinement were tested under cyclic lateral loading with a constant axial load level. The main variable was the confinement ratio of the FRP jacket, which can be controlled by wrapping different number of FRP sheets around the Spiral Corrugated Tube. Two columns, FWSCT-1 and FWSCT-3 were designed based on a reference column, FWSCT-0 (Wu 2015), which confined by only a spiral corrugated tube with 0.4 mm thick and 1940 mm tube length. FWSCT-1 and FWSCT-3 were wrapped by additional one-layer and three-layer of Glass Fiber-Reinforced Polymer (GFRP) jackets around a spiral corrugated tube, respectively. Test results showed that the brittle shear failure in specimen FWSCT-0 is improved by wrapping one-layer of the GFRP jacket as seen in the test of specimen FWSCT-1. Specimen FWSCT-1 failed at 4% story drift, resulting in flexural-shear failure of column, while specimen FWSCT-3 failed at 7% story drift, resulting in flexural failure of longitudinal bars.

TABLE OF CONTENTS
SIGNATURE PAGE i
ACKNOWLEDGMENTS ii
ABSTRACT iii
TABLE OF CONTENTS iv
List of Tables viii
List of Figures ix
List of Photos xii
Chapter 1 Introduction 1
1.1 General 1
1.2 Background 1
1.3 Problem Statement 2
1.4 Research Objective 3
Chapter 2 Literature Review 4
2.1 Constitutive Relationships of Confined Concrete 4
2.1.1 Concrete with Steel-confinement 5
2.1.2 Concrete with FRP-confinement 5
2.1.3 Concrete with FRP Wrapped Spiral Corrugated Tube (FWSCT)-Confinement 7
2.2 Seismic Tests on Confined Concrete Columns 8
2.2.1 Columns with Steel-Confinement 8
2.2.2 Columns with FRP-confinement 9
2.3 Code Provisions and Analytical Models for Shear Strength Design 13
2.3.1 Nominal Shear Capacity for Normal Reinforced Concrete Column 13
2.3.2 FRP Jacket Shear Strength Contribution, 16
2.4 Shear Strength Analysis of FWSCT columns 19
Chapter 3 Experimental Program 21
3.1 General 21
3.2 Design of Specimens 21
3.2.1 Analysis Program 22
3.2.2 Confined-Concrete Model 22
3.2.3 Moment-Curvature Analysis 24
3.2.4 Load-Displacement Analysis 27
3.2.5 Flexural and Shear Strength Prediction 29
3.2.6 Plastic Hinge Length 29
3.2.7 Shear Strength Prediction 30
3.3 Details of Column Specimens 31
3.3.1 Concrete 32
3.3.2 Steel Reinforcement 32
3.3.3 Spiral Corrugated Tube 33
3.3.4 Fiber-Reinforced Polymer 33
3.4 Construction of Specimens 34
3.4.1 FRP Wrapping 34
3.4.2 Reinforcing Cages 36
3.4.3 Formwork 37
3.4.4 Casting of Concrete 37
3.5 Instrumentation 38
3.5.1 Strain Gauges 38
3.5.2 Linear variable differential transformers (LVDT) and Dial Gauge 40
3.5.3 Motion Capture System (NDI) 40
3.6 Testing 41
3.6.1 Test Setup 41
3.6.2 Testing Procedure 42
Chapter 4 Experimental and Analytical Results 43
4.1 Test Results 43
4.1.1 Material Test Results 43
4.1.2 Test Observations 45
4.1.3 General Behavior and Lateral Force-Displacement Response 50
4.1.4 Curvature Distribution 53
4.1.5 Hoop Strains in Potential Crack Patterns 54
4.2 Comprehensive Comparison 56
4.2.1 Initial Stiffness, Ductility and Normalized Hysteresis Loop 56
4.2.2 Energy Dissipation and Equivalent Viscous Damping Ratio 57
4.3 Analytical Results 58
4.3.1 Shear Strength Envelope and P-delta Effect 59
4.3.2 Comparison of Revised Shear Strength Prediction and Test Results 59
4.3.3 Shear Strength Contribution of Each Component: Vc ,Vp ,Vf and Vsct 62
Chapter 5 Conclusions 67
5.1 General 67
5.2 Conclusions 67
5.3 Future Works 69
References 70

1.ACI 318 Committee. (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary. Farmington Hills, Mich., 2014.
2.ACI 440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structure. Reported by ACI Committee. 2008; 440(2008).
3.ASTM D3039/D3039M-14 (2014) Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA.
4.Attard, M. M., and Setunge, S. 1996, "Stress-Strain Relationship of Confined and Unconfined Concrete." ACI Materials Journal, 93(5), pp. 432-442.
5.Bae, S., 2005, “Seismic Performance of Full-Scale Reinforced Concrete Columns,” Ph.D. Thesis, University of Texas at Austin, USA, 312 p.
6.Considere, A., 1903, Experimental Researches on Reinforced Concrete, McGraw Hill Publishing Co., New York, 188 p.
7.Cui, C., and Sheikh, S. A., 2010, “Analytical Model for Circular Normal- and High-Strength Concrete Confined with FRP,” Journal of Composites for Construction, ASCE, 14(5), pp.562-572.
8.Gould, N. C., and Harmon, T. G., 2002, “Confined Concrete Columns Subjected to Axial Load, Cyclic Shear, and Cyclic Flexure—Part II: Experimental Program”, ACI Structural Journal, 99(1), pp. 42-50.
9.Kowalsky, M. J., & Priestley, M. N. (2000). Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions. ACI Structural Journal, 97(3).
10.Lam, L., and Teng, J. G., 2003, “Design-Oriented Stress-Strain Model for FRP-Confined Concrete,” Construction and Building Materials, V.17, pp. 471-489.
11.Lam, L., and Teng, J. G., 2004, “Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete”, Journal of Composites for Construction, ASCE, 8(6), pp. 539-548.
12.Lee, C.-S. (2006). “Modeling of FRP-jacketed RC columns subject to combined axial and lateral loads.” Ph.D. thesis, Univ. of California, San Diego.
13.Lio U-I. (2014). “Design of Seismic Confinement of RC Columns Using Normal Strength Materials.” Master Thesis, Advisor Hwang Shyh-Jiann, Department of Civil Engineering, National Taiwan University, Taiwan.
14.Liu, J. and Sheikh, S. A., 2009, “Seismic Behaviour of Steel-Confined and FRP-Confined Circular Concrete Columns,” Research Report, Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada.
15.Mirmiran, A. and Shahawy, M., 1997, “Behaviour of Concrete Columns Confined by Fiber Composites,” Journal of Structural Engineering, ASCE, 123(5), pp. 136-146.
16.Mirmiran, Amir, et al. "Effect of column parameters on FRP-confined concrete." Journal of Composites for Construction 2.4 (1998): 175-185.
17.Pantazopoulou, S. J., and Mills, R. H., “Microstructural Aspects of the Mechanical Response of Plain Concrete,” ACI Materials Journal, Vol. 92, N0. 6, November-December 1995, pp. 605-616.
18.Park, R., and Paulay, T, 1975, Reinforced Concrete Structures, John Wiley & Son, Inc., New York, London, Sydney, Toronto, 769 p.
19.Priestley, M. J. N., & Park, R. (1987). Strength and ductility of concrete bridge columns under seismic loading. ACI Structural Journal, 84(1).
20.Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. John Wiley & Sons.
21.Richart, F. E.; Brandtzaeg, A. and Brown, R. L., 1928, “A Study of the Failure of Concrete under Combined Compressive Stresses,” Engineering Experimental Station Bulletin No.185, University of Illinois, Urbana, USA, 104 p.
22.Richart, F. E.; Brandtzaeg, A. and Brown, R. L. 1929, "The Failure of Plain and Spirally Reinforced Concrete in Compression", Engineering Experimental Station Bulletin, No.190, University of Illinois, Urbana, USA, 74 p.
23.Seible, F., Priestley, M.J.N., Hegemier, G.A., and Innamorato, D. (1997). “Seismic retrofit of RC Columns with Continuous Carbon Fiber Jackets.” J. Compos. Constr., 1(2), 52-62.
24.Tan H-H. (2014). “Mechanical Behavior and Test of Axially Loaded Concrete-Filled Metal Spiral Tubes Wrapped with Glass Fiber-Reinforced Polymer (GFRP) Composites.” Master Thesis, Advisor Chou Chung-Che, Department of Civil Engineering, National Taiwan University, Taiwan, (in Chinese).
25.Wang, Z. Y.; Lu, X. L.; Li, W.; and Wang, D. Y., 2009, “Experimental Research on Seismic Performance of High Strength Concrete Circular Column Confined with Carbon Fiber Sheets at Plastic Hinge Zone,” Building Structure, 2009(2),
(in Chinese).
26.Wu K-Y. (2015). “Seismic Tests of Circular Reinforced Concrete Columns Confined with a Spiral Corrugated Tube and Glass Fiber Reinforced Polymer (GFRP) Materials.” Master Thesis, Advisor Chou Chung-Che, Department of Civil Engineering, National Taiwan University, Taiwan, (in Chinese).
27.Xiao, Y., and Ma, R. (1997). “Seismic Retrofit of RC Circular Columns Using Prefabricated Composite Jacketing.” J. Struct. Eng., 123(10), 1357-1364.
28.周中哲,吳愷毅,李中生(2016)「玻璃纖維包覆螺紋管圍束鋼筋混凝土圓柱發展與耐震試驗」,結構工程(2016/3審核通過)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top