跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉亭霞
研究生(外文):Ting-Sia Ye
論文名稱:以淤泥實驗探討壓密、射流、擾動及水力抽砂行為之研究
論文名稱(外文):Consolidation, jetting, stirring and hydrosuction of experimental mud deposits
指導教授:卡艾瑋
指導教授(外文):Hervé Capart
口試委員:周憲德吳富春賴悅仁
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:113
中文關鍵詞:水力抽砂自重壓密水刀絞刀土壤特性
外文關鍵詞:hydrosuctionself-weight consolidationwater jetrotary cuttersoil property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的在於探討不同自重壓密天數下的土壤特性及外力裝置對水力抽砂的影響,試圖找出最佳效率的抽泥方法。論文分成兩部分:第一部分為了解土壤特性,透過在不同壓密天數下,記錄淤泥表面得到每日壓密量、以T型貫入實驗得到剪力強度和取樣方式得到分層密度,並建立壓密理論與實驗結果進行比較;第二部分為水力抽砂實驗,過去研究顯示,水力抽砂在長天數的條件下,因為土體強度太大,效果有限,因此本論文著重於此,設計在不同壓密天數的條件下,分別配置水刀、絞刀破壞土壤結構,同時進行水力抽砂,此外,配合雷射掃描方式記錄抽泥前後的地形,結果顯示,在無外力裝置的情形下,抽砂效率會隨著天數增加而降低,然而,對於短天數而言,有無搭配外力並沒有明顯差別,但對於長天數來說,外力裝置確實發揮功用,使得水力抽砂順利進行,效果較無外力裝置大幅提升。

In order to alleviate problems caused by reservoir sedimentation, the hydrosuction is an effective way for deposition removal. To help interpret the sediment properties of different self-weight consolidation duration, we investigated the shear strength by T-bar testing, density by sampling and settlement by record. Besides, the consolidation theory is built to compare with experiment results. Moreover, compared to previous research, we conducted a series of hydrosuction experiments focused on long consolidation duration, in which hydrosuction had limitation in withdrawal. In addition to the reduced-scale hydrosuction, water jet or rotary cutter was equipped as an external force to damage sediment structure by jetting and stirring. The result shows that the efficiency of hydrosuction with no equipment gets worse as consolidation duration increases. Furthermore, the external force equipment works well in long consolidation duration yet not sufficiently in short.

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
PART I CONSOLIDATION 5
Chapter 2 Theory 7
2.1 Framework of Theory 7
2.2 Solution 11
2.3 Results 13
Chapter 3 Experiments 17
3.1 Introduction 17
3.2 Settlement 20
3.2.1 Experimental Material and Procedure 20
3.2.2 Experimental Results 21
3.3 Shear Strength 22
3.3.1 Introduction 22
3.3.2 Experimental Material, Setup and Procedure 23
3.3.3 Data Analysis and Interpretation 28
3.3.4 Experimental Results 35
3.4 Layer Density 38
3.4.1 Experimental Material, Setup and Procedure 38
3.4.2 Experimental Results 42
Chapter 4 Comparison 47
4.1 Calibration of Parameters 47
4.2 Compare Theory with Experiments 48
4.2.1 Settlement 48
4.2.2 Shear Strength 49
4.2.3 Layer Density 52
PART II HYDROSUCTION 61
Chapter 5 Experiments 63
5.1 Introduction 63
5.2 Experimental Material and Setup 63
5.3 External Force Equipment 70
5.3.1 Introduction 70
5.3.2 Water Jet 71
5.3.3 Rotary Cutter 73
5.4 Experimental Procedure 75
Chapter 6 Image Measurement 79
6.1 Introduction 79
6.2 Laser Scan System 79
6.2.1 Laser Device 79
6.2.2 Laser Mobile Track 80
6.2.3 Frame 81
6.3 Image Acquisition 82
6.4 Image Processing 83
6.4.1 Calibration 83
6.4.2 Image Pre-processing 85
6.4.3 Laser Line Catcher 86
6.4.4 Transfer 2D Image Lines to 3D Lines 87
6.4.5 Digital Terrain Model (DTM) 88
Chapter 7 Results and Comparison 89
7.1 Validation 89
7.2 Duration Comparison 94
7.3 Equipment Comparison 100
Chapter 8 Conclusion 109
REFERENCE 111



Chen, Y. W., (2015). Plug formation in hydrosuction experiments with semi-consolidation fine sediment, M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University.
Das, B. M., & Sobhan, K. (2002). Principles of geotechnical engineering, Ed., Bill Stenquist, Pacific Grove.
DeGroot, D., Low, H. E., DeJong, J., Randolph, M., & Yafrate, N. (2010). “Recommended practice for full-flow penetrometer testing and analysis.” Geotechnical Testing Journal, 33(2).
Fan, J., & Morris, G. L. (1992). “Reservoir sedimentation. II: Reservoir desiltation and long-term storage capacity.” Journal of Hydraulic Engineering, 118(3), 370-384.
Fox, P. J., Lee, J., & Qiu, T. (2005). “Model for large strain consolidation by centrifuge.” International Journal of Geomechanics, 5(4), 267-275.
Hotchkiss, R. H., & Huang, X. (1995). “Hydrosuction sediment-removal systems (HSRS): principles and field test.” Journal of Hydraulic Engineering, 121(6), 479-489.
Ke, W. T., (2005). Formation of symmetrically palmated deltas: shallow flow computations and experimental study, M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University.
Ke, W. T., Chen, Y. W., Hsu, H. C., Toigo, K., Weng, W. C., & Capart, H. (2016). “Influence of Sediment Consolidation on Hydrosuction Performance.” Journal of Hydraulic Engineering, 04016037.
Lai, Y. J., (2010). Morphodynamics of coevolving fluvial and hyperpycnal valleys, Doctoral dissertation, Graduate Institute of Civil Engineering, National Taiwan University.
Lin, T. W. (1983). Sedimentation and self-weight consolidation of dredge spoil, Doctoral dissertation, Graduate Institute of Civil Engineering, Iowa State University.
Newson, T. A., Bransby, M. F., Brunning, P., & Morrow, D. R. (2004, January). “Determination of undrained shear strength parameters for buried pipeline stability in deltaic soft clays.” In The Fourteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
Ni, W. J., & Capart, H. (2006). “Groundwater drainage and recharge by networks of irregular channels.” Journal of Geophysical Research: Earth Surface, 111(F2).
Ni, W. J., (2005). Groundwater drainage and recharge by geomorphically active gullies. M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University.
Randolph, M. F., & Houlsby, G. T. (1984). “The limiting pressure on a circular pile loaded laterally in cohesive soil.” Geotechnique, 34(4), 613-623.
Schleiss, A., De Cesare, G., & Althaus, J. M. I. (2010). “Reservoir sedimentation threatens the sustainable use of hydropower.” Wasser, Engergie, Luft-Eau, energie, air 102(1), 31-40.
Singh, R. P., Ojha, C. S. P., & Singh, M. (2016). “Finite volume approach for finite strain consolidation.” International Journal for Numerical and Analytical Methods in Geomechanics, 40(1), 117-140.
Stewart, D. P., & Randolph, M. F. (1994). “T-bar penetration testing in soft clay.” Journal of Geotechnical Engineering, 120(12), 2230-2235.
Xie, K. H., & Leo, C. J. (2004). “Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays.” Computers and Geotechnics, 31(4), 301-314.
施國欽. (1997). 大地工程學 (一) 土壤力學篇. 第六版. 文笙書局, 台北.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top