黃兆龍. (1997). 混凝土性質與行為, 詹氏書局, 台北.
日本材料学会. (1991). 土質安定材料委員会: 地盤改良工法便覧, 第6章水泥安定處理工法
曾迪揚. (2012). 有效應力不排水深開挖分析之勁度參數探討. (碩士論文), 國立台灣科技大學營建工程系.Abrams, D. A. (1918). Design of concrete mixtures (Vol. 1). Structural Materials Research Laboratory, Lewis Institute.
Ali, F. H., Adnan, A., & Choy, C. K. (1992). Geotechnical properties of a chemically stabilized soil from Malaysia with rice husk ash as an additive. Geotechnical & Geological Engineering, 10(2), 117-134.
ASTM D422-63 (2007). Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016), ASTM International, West Conshohocken, PA, www.astm.org
ASTM D4219-08 (2008). Standard Test Method for Unconfined Compressive Strength Index of Chemical- Grouted Soils, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D4318-10 (2010). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D2216-10 (2010). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D2487-11 (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org
ASTM D2166 / D2166M-13 (2013). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C191-13 (2013). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D854-14 (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C231 / C231M-14 (2014). Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C39 / C39M-16 (2016). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C138 / C138M-16 (2016). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C173 / C173M-16 (2016). Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method, ASTM International, West Conshohocken, PA, www.astm.org
Baker S. (2000). Deformation Behaviour of Lime/Cement Column Stabilized Clay. Ph.D.Diss.,Chalmers University of Technology, Göteborg.
Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453.
Bitir, A. C., Musat, V., & Larsson, S. (2015). Laboratory Methods Used to Assess the Mechanical Properties of Soft Soils Improved by Deep Mixing. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 61(4), 165.
Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of geotechnical and geoenvironmental engineering, 130(7), 696-706.
Consoli, N. C., Foppa, D., Festugato, L., & Heineck, K. S. (2007). Key parameters for strength control of artificially cemented soils. Journal of geotechnical and geoenvironmental engineering, 133(2), 197-205.
Chew, S. H., & Bharati, S. K. (2010). Use of recycled copper slag in cement-treated Singapore marine clay. In Advances in Environmental Geotechnics (pp. 705-710). Springer Berlin Heidelberg.
Cong, M., Longzhu, C., & Bing, C. (2014). Analysis of strength development in soft clay stabilized with cement-based stabilizer. Construction and Building Materials, 71, 354-362.
Cai, G. H., Liu, S. Y., Du, Y. J., Zhang, D. W., & Zheng, X. (2015). Strength and deformation characteristics of carbonated reactive magnesia treated silt soil. Journal of Central South University, 22, 1859-1868.
Chian, S. C., Nguyen, S. T., & Phoon, K. K. (2015). Extended Strength Development Model of Cement-Treated Clay. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 06015014.
Chompoorat, T., & Likitlersuang, S. (2016). Assessment of shrinkage characteristic in blended cement and fly ash admixed soft clay. Japanese Geotechnical Society Special Publication, 2(6), 311-316.
Flores, R. D., Di Emidio, G., and Van Impe, W. F. (2010). Small-Strain Shear Modulus and Strength Increase of Cement-Treated Clay. Geotechnical Testing Journal, Vol. 33, No. 1, pp. 1-10, http://dx.doi.org/10.1520/GTJ102354. ISSN 0149-6115
Gallavresi, F. (1992). Grouting improvement of foundation soils. In Grouting, soil improvement and geosynthetics, pp. 1-38. ASCE.
Horpibulsuk, S., Miura, N., & Nagaraj, T. S. (2003). Assessment of strength development in cement-admixed high water content clays with Abrams'' law as a basis. Geotechnique, 53(4), 439-444.
Horpibulsk, S., Rachan, R., Suddeepong, A., & Chinkulkijniwat, A. (2011). Strength development in cement admixed Bangkok clay: laboratory and field investigations. Soils and Foundations, 51(2), 239-251.
JGS 0821-00 (2000). Practice for Making and Curing Stabilized Soil Specimens Without Compaction (Japanese). Geotechnical Test Procedure and Commentary, Japanese Geotechnical Society.
Jaritngam, S., Yandell, W. O., & Taneerananon, P. (2013). Evaluating lateritic soil-cement strength and modulus using multiple regression model. Journal of Society for Transportation and Traffic Studies, 4(1), 53-59.
Kwet-Yew, Y., Teik-Lim, G., & Thiam, S. T. (2002). Properties of Singapore marine clays improved by cement mixing.
Kolias, S., Kasselouri-Rigopoulou, V., & Karahalios, A. (2005). Stabilization of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301-313.
Kumar, A., Walia, B. S., & Bajaj, A. (2007). Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. Journal of Materials in Civil Engineering, 19(3), 242-248.
Kamruzzaman, A. H., Chew, S. H., & Lee, F. H. (2009). Structuration and destructuration behavior of cement-treated Singapore marine clay. Journal of geotechnical and geoenvironmental engineering, 135(4), 573-589.
Kamei, T., Ahmed, A., & Shibi, T. (2013). The use of recycled bassanite and coal ash to enhance the strength of very soft clay in dry and wet environmental conditions. Construction and Building Materials, 38, 224-235.
Kamei, T., Ahmed, A., & Ugai, K. (2013). Durability of soft clay soil stabilized with recycled Bassanite and furnace cement mixtures. Soils and Foundations, 53(1), 155-165.
Kitazume, M., Tanaka, H., Le, B. K., Le, L. P., Ho, C. T., Nguyen, T. B., & Mai, P. A. (2015). Laboratory investigation of soilcrete created from Mekong Delta’s soils mixed with cement.
Littlejohn, G. S., & Bruce, D. A. (1977). Rock anchors-state of the art. Ground Engineering, 9(Analytic).
Lorenzo, G. A., & Bergado, D. T. (2006). Fundamental characteristics of cement-admixed clay in deep mixing. Journal of materials in civil engineering, 18(2), 161-174.
Maranha das Neves, E., Caldeira, L., & Bilé Serra, J. (2012). Assessing the feasibility of a foundation treatment solution based on CSM panels at a river dock in Lisbon.
Moh, Z.C. (1965). Reactions of soil minerals with cement and chemicals. Highw. Res. Board Rec., 86: 39-61
Miller, G. A., & Azad, S. (2000). Influence of soil type on stabilization with cement kiln dust. Construction and building materials, 14(2), 89-97.
Miura, N., Horpibulsuk, S., & Nagaraj, T. S. (2001). Engineering behavior of cement stabilized clay at high water content. Japanese Geotechnical Society, 41(5), 33-45.
Nalbantoğlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377-381.
Pollard, S. J. T., Montgomery, D. M., Sollars, C. J., & Perry, R. (1991). Organic compounds in the cement-based stabilisation/solidification of hazardous mixed wastes - Mechanistic and process considerations. Journal of hazardous materials, 28(3), 313 - 327.
Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of fly ash on engineering properties of expansive soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764-767.
Pakbaz, M. S., & Farzi, M. (2015). Comparison of the effect of mixing methods (dry vs. wet) on mechanical and hydraulic properties of treated soil with cement or lime. Applied Clay Science, 105, 156-169.
Saitoh, S. (1985). Mechanical property of treated soil by the Deep Mixing Method. Kisoko, 13(2): 108 - 114 (in Japanese)
Saitoh, S., Suzuki, Y. & Shirai, K. (1985). Hardening of soil improved by the deep mixing method. Proc. of the 11th International Conference on Soil Mechanics and Foundation Engineering. Vol. 3. pp. 1745 - 1748.
Seco, A., Ramírez, F., Miqueleiz, L., & García, B. (2011). Stabilization of expansive soils for use in construction. Applied Clay Science, 51(3), 348-352.
Terashi, M., Okumura, T.&Mitsumoto, T. (1977) Fundamental properties of lime-treated soils. Report of the Port and Harbour Research Institute. Vol. 16. No. 1. pp. 3–28 (in Japanese).
Tan, T., Goh, T., and Yong, K. (2002). Properties of Singapore Marine Clays Improved by Cement Mixing. Geotechnical Testing Journal, Vol. 25, No. 4, pp. 1-12, http://dx.doi.org/10.1520/GTJ11295J. ISSN 0149-6115
Tran-Nguyen, H. H., Kitazume, M., Luong, B. T., & Bui, T. T. (2014). Laboratory investigation on An Giang soil mixed with dry cement. Malaysian Journal of Civil Engineering, 26(1), 77-88.
Uddin, K., Balasubramaniam, A. S., & Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. Geotechnical Engineering, 28, 89-119.
Xie, S., Liu, S., Du, G., & Liu, Z. (2011). Improvement in strength characteristics of soft marine clay by Bidirectional Dry Mixing Method. In Remote Sensing, Environment and Transportation Engineering (RSETE), International Conference on, pp. 3202-3205. IEEE.
Zhang, R. J., Santoso, A. M., Tan, T. S., & Phoon, K. K. (2013). Strength of high water-content marine clay stabilized by low amount of cement. Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2170-2181.
Zhang, T., Yue, X., Deng, Y., Zhang, D., & Liu, S. (2014). Mechanical behaviour and micro-structure of cement - stabilised marine clay with a metakaolin agent. Construction and Building Materials, 73, 51-57.
Zhang, T., Cai, G., Liu, S., & Puppala, A. J. (2016). Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product. KSCE Journal of Civil Engineering, 1-12.