跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 13:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪晨瑋
研究生(外文):Chen-Wei Hung
論文名稱:爐石水泥改良高嶺土之強度特性
論文名稱(外文):Strength Properties of Slag Cement Stabilized Kaolinite
指導教授:葛宇甯
口試委員:廖文正蔡祁欽
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:113
中文關鍵詞:爐石水泥改良高嶺土無圍壓縮試驗品質控制單位重無圍壓縮強度
外文關鍵詞:slag-cement stabilized clayunconfined compression testquality controlunit weightunconfined compressive strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
軟弱黏土的低強度與高壓縮性造成應用上很大的困難,工程上通常透過水泥遇水而進行的水化作用,以及其與黏土之間發生的卜特蘭作用之固化產物,填充土壤間的孔隙,取代孔隙間原本存在的水或是空氣,抑或提供膠結性,黏結土壤顆粒,增加整體土體的強度、勁度與耐久性,減少可壓縮性與滲透性,其中強度的增加為本研究主要探討的現象。由於環保意識的提升以及經濟成本的掌控,近年來開始使用工業廢棄物(例如:爐石、飛灰等)取代部分水泥用量,可得到相似的結果,且進一步降低結構體的重量,達到輕量化的效果,此些取代物同時也能降低水化熱,減少溫度裂縫生成的機會。
本研究主要透過一系列的無圍壓縮試驗,探討高嶺土在不同爐石水泥含量,以及不同含水量的情況下,對強度的影響程度。選取5種不同的水泥含量,C/S ratio = 15%、20%、25%、50%、75%,分別搭配3種含水量,ωi = 1.8LL、2.0LL、2.2LL,以及5種養護天數,curing time = 3、7、14、28、56天,進行配比調配。C/S ratio為乾水泥與乾黏土的重量比,當C/S ratio越大,即表示在相同黏土重量下之水泥含量越多;含水量部分則以高嶺土的液限做為參考指標,以其液限的1.8倍、2倍與2.2倍的高含水量情況,模擬軟弱黏土的狀況。而文獻中極少提到試體品質的控制,本研究針對試體品質也做了討論,並以單位重做為試體品質衡量的準則,認為當單位重誤差越大,單位重越小,代表試體內部大部分氣泡尚未排除,可能有低估材料強度的疑慮,實驗數據不夠可信。
實驗結果顯示,材料強度會隨著養護天數增加而隨之成長,而高爐石水泥含量的試體,其強度成長趨勢又比其他配比更明顯。不僅是材料強度會增加,其勁度也會隨著爐石水泥含量增加而更大。因此,爐石水泥可謂是一種有效的、具有經濟性的,且對環境保護有貢獻的一種良好的地盤改良材料。

Due to low strength and high compressibility, soft clay should be improved to increase its strength, stiffness and durability, and decrease the permeability and the ground settlement for a better construction condition. Nowadays the sustainability is much more important, so recycled materials such as fly ash and slag have been widely used in soft ground improvement. Through replacing part of the cement, the slag-cement material could provide a lighter weight and lower hydration heat. In this research, the soft clay defined as kaolinite with high water content was mixed with slag-cement.
In this thesis, a series of unconfined compression tests were carried out on the slag-cement stabilized clay. The specimens were prepared under three different initial water contents, ωi = 1.8LL, 2.0LL, 2.2LL, and five different cement content, C/S = 15%, 20%, 25%, 50%, 75%. All specimens were stored in a saturated environment to be cured for 3, 7, 14, 28, and 56 days before testing.
The variation of the unit weight could be controlled within 1.5%, and the variation of the duplicated tests was also compared in this research. Therefore, the quality control of the specimens could be understood clearly.
The results showed that the unconfined compressive strength increases when the curing time increases. It also indicated that the higher the slag-cement content, the greater strength and stiffness of the improved clay. Based on the test results, slag-cement is an effective, economic and environment friendly additive for soft ground improvement.

口試委員審定書 I
致謝 II
摘要 III
Abstract IV
List of Tables IX
List of Figures XI
Symbol Table XVII
Chapter 1 Introduction 1
1.1 Motivation and Methodology 2
1.2 Thesis Outline 3
Chapter 2 Literature Review 4
2.1 Chemical Reactions of Slag-Cement 4
2.2 Strength Properties of Cement Stabilized Clay 6
2.2.1 Effect of Soil Type 7
2.2.2 Effect of Cement Content 8
2.2.3 Evolution of Water Content 8
2.2.4 Effect of clay-water/cement ratio 11
2.2.5 Type of Improver 19
2.3 Failure Mechanism and Permissible Tolerance of Test Age 20
2.4 Durability of Cement Treated Clay 22
Chapter 3 Experimental Program 23
3.1 Materials 23
3.1.1 Kaolinite 23
3.1.2 Slag cement 25
3.2 Specimen preparation 27
3.2.1 Calculation of Mix Ratio 28
3.2.2 Procedure of Preparing Specimens 30
3.2.3 Curing Environment 37
3.3 Test Method 38
3.3.1 Unconfined Compression Test 39
3.3.2 Water Content Test 42
3.3.3 Time of Setting Test 43
Chapter 4 Results and Discussions 46
4.1 Unconfined Compressive Strength 46
4.1.1 Quality Control of Specimens 52
4.1.2 Effect of Curing Time 57
4.1.3 Water Content Evolution 61
4.1.4 Effect of Slag-Cement Content 64
4.1.5 Effect of Mix Ratios at a Constant Unit Weight 65
4.1.6 Effect of clay-water/cement ratio 67
4.1.7 Evolution of Esec50 72
4.2 Initial Time of Setting 80
4.3 Failure fracture pattern 83
Chapter 5 Conclusions and Recommendations 92
5.1 Conclusions 92
5.2 Recommendations for Future Work 95
References 97
Appendix 107

黃兆龍. (1997). 混凝土性質與行為, 詹氏書局, 台北.
日本材料学会. (1991). 土質安定材料委員会: 地盤改良工法便覧, 第6章水泥安定處理工法
曾迪揚. (2012). 有效應力不排水深開挖分析之勁度參數探討. (碩士論文), 國立台灣科技大學營建工程系.
Abrams, D. A. (1918). Design of concrete mixtures (Vol. 1). Structural Materials Research Laboratory, Lewis Institute.
Ali, F. H., Adnan, A., & Choy, C. K. (1992). Geotechnical properties of a chemically stabilized soil from Malaysia with rice husk ash as an additive. Geotechnical & Geological Engineering, 10(2), 117-134.
ASTM D422-63 (2007). Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016), ASTM International, West Conshohocken, PA, www.astm.org
ASTM D4219-08 (2008). Standard Test Method for Unconfined Compressive Strength Index of Chemical- Grouted Soils, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D4318-10 (2010). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D2216-10 (2010). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D2487-11 (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org
ASTM D2166 / D2166M-13 (2013). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C191-13 (2013). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, www.astm.org
ASTM D854-14 (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C231 / C231M-14 (2014). Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C39 / C39M-16 (2016). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C138 / C138M-16 (2016). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C173 / C173M-16 (2016). Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method, ASTM International, West Conshohocken, PA, www.astm.org
Baker S. (2000). Deformation Behaviour of Lime/Cement Column Stabilized Clay. Ph.D.Diss.,Chalmers University of Technology, Göteborg.
Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453.
Bitir, A. C., Musat, V., & Larsson, S. (2015). Laboratory Methods Used to Assess the Mechanical Properties of Soft Soils Improved by Deep Mixing. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 61(4), 165.
Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of geotechnical and geoenvironmental engineering, 130(7), 696-706.
Consoli, N. C., Foppa, D., Festugato, L., & Heineck, K. S. (2007). Key parameters for strength control of artificially cemented soils. Journal of geotechnical and geoenvironmental engineering, 133(2), 197-205.
Chew, S. H., & Bharati, S. K. (2010). Use of recycled copper slag in cement-treated Singapore marine clay. In Advances in Environmental Geotechnics (pp. 705-710). Springer Berlin Heidelberg.
Cong, M., Longzhu, C., & Bing, C. (2014). Analysis of strength development in soft clay stabilized with cement-based stabilizer. Construction and Building Materials, 71, 354-362.
Cai, G. H., Liu, S. Y., Du, Y. J., Zhang, D. W., & Zheng, X. (2015). Strength and deformation characteristics of carbonated reactive magnesia treated silt soil. Journal of Central South University, 22, 1859-1868.
Chian, S. C., Nguyen, S. T., & Phoon, K. K. (2015). Extended Strength Development Model of Cement-Treated Clay. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 06015014.
Chompoorat, T., & Likitlersuang, S. (2016). Assessment of shrinkage characteristic in blended cement and fly ash admixed soft clay. Japanese Geotechnical Society Special Publication, 2(6), 311-316.
Flores, R. D., Di Emidio, G., and Van Impe, W. F. (2010). Small-Strain Shear Modulus and Strength Increase of Cement-Treated Clay. Geotechnical Testing Journal, Vol. 33, No. 1, pp. 1-10, http://dx.doi.org/10.1520/GTJ102354. ISSN 0149-6115
Gallavresi, F. (1992). Grouting improvement of foundation soils. In Grouting, soil improvement and geosynthetics, pp. 1-38. ASCE.
Horpibulsuk, S., Miura, N., & Nagaraj, T. S. (2003). Assessment of strength development in cement-admixed high water content clays with Abrams'' law as a basis. Geotechnique, 53(4), 439-444.
Horpibulsk, S., Rachan, R., Suddeepong, A., & Chinkulkijniwat, A. (2011). Strength development in cement admixed Bangkok clay: laboratory and field investigations. Soils and Foundations, 51(2), 239-251.
JGS 0821-00 (2000). Practice for Making and Curing Stabilized Soil Specimens Without Compaction (Japanese). Geotechnical Test Procedure and Commentary, Japanese Geotechnical Society.
Jaritngam, S., Yandell, W. O., & Taneerananon, P. (2013). Evaluating lateritic soil-cement strength and modulus using multiple regression model. Journal of Society for Transportation and Traffic Studies, 4(1), 53-59.
Kwet-Yew, Y., Teik-Lim, G., & Thiam, S. T. (2002). Properties of Singapore marine clays improved by cement mixing.
Kolias, S., Kasselouri-Rigopoulou, V., & Karahalios, A. (2005). Stabilization of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301-313.
Kumar, A., Walia, B. S., & Bajaj, A. (2007). Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. Journal of Materials in Civil Engineering, 19(3), 242-248.
Kamruzzaman, A. H., Chew, S. H., & Lee, F. H. (2009). Structuration and destructuration behavior of cement-treated Singapore marine clay. Journal of geotechnical and geoenvironmental engineering, 135(4), 573-589.
Kamei, T., Ahmed, A., & Shibi, T. (2013). The use of recycled bassanite and coal ash to enhance the strength of very soft clay in dry and wet environmental conditions. Construction and Building Materials, 38, 224-235.
Kamei, T., Ahmed, A., & Ugai, K. (2013). Durability of soft clay soil stabilized with recycled Bassanite and furnace cement mixtures. Soils and Foundations, 53(1), 155-165.
Kitazume, M., Tanaka, H., Le, B. K., Le, L. P., Ho, C. T., Nguyen, T. B., & Mai, P. A. (2015). Laboratory investigation of soilcrete created from Mekong Delta’s soils mixed with cement.
Littlejohn, G. S., & Bruce, D. A. (1977). Rock anchors-state of the art. Ground Engineering, 9(Analytic).
Lorenzo, G. A., & Bergado, D. T. (2006). Fundamental characteristics of cement-admixed clay in deep mixing. Journal of materials in civil engineering, 18(2), 161-174.
Maranha das Neves, E., Caldeira, L., & Bilé Serra, J. (2012). Assessing the feasibility of a foundation treatment solution based on CSM panels at a river dock in Lisbon.
Moh, Z.C. (1965). Reactions of soil minerals with cement and chemicals. Highw. Res. Board Rec., 86: 39-61
Miller, G. A., & Azad, S. (2000). Influence of soil type on stabilization with cement kiln dust. Construction and building materials, 14(2), 89-97.
Miura, N., Horpibulsuk, S., & Nagaraj, T. S. (2001). Engineering behavior of cement stabilized clay at high water content. Japanese Geotechnical Society, 41(5), 33-45.
Nalbantoğlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377-381.
Pollard, S. J. T., Montgomery, D. M., Sollars, C. J., & Perry, R. (1991). Organic compounds in the cement-based stabilisation/solidification of hazardous mixed wastes - Mechanistic and process considerations. Journal of hazardous materials, 28(3), 313 - 327.
Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of fly ash on engineering properties of expansive soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764-767.
Pakbaz, M. S., & Farzi, M. (2015). Comparison of the effect of mixing methods (dry vs. wet) on mechanical and hydraulic properties of treated soil with cement or lime. Applied Clay Science, 105, 156-169.
Saitoh, S. (1985). Mechanical property of treated soil by the Deep Mixing Method. Kisoko, 13(2): 108 - 114 (in Japanese)
Saitoh, S., Suzuki, Y. & Shirai, K. (1985). Hardening of soil improved by the deep mixing method. Proc. of the 11th International Conference on Soil Mechanics and Foundation Engineering. Vol. 3. pp. 1745 - 1748.
Seco, A., Ramírez, F., Miqueleiz, L., & García, B. (2011). Stabilization of expansive soils for use in construction. Applied Clay Science, 51(3), 348-352.
Terashi, M., Okumura, T.&Mitsumoto, T. (1977) Fundamental properties of lime-treated soils. Report of the Port and Harbour Research Institute. Vol. 16. No. 1. pp. 3–28 (in Japanese).
Tan, T., Goh, T., and Yong, K. (2002). Properties of Singapore Marine Clays Improved by Cement Mixing. Geotechnical Testing Journal, Vol. 25, No. 4, pp. 1-12, http://dx.doi.org/10.1520/GTJ11295J. ISSN 0149-6115
Tran-Nguyen, H. H., Kitazume, M., Luong, B. T., & Bui, T. T. (2014). Laboratory investigation on An Giang soil mixed with dry cement. Malaysian Journal of Civil Engineering, 26(1), 77-88.
Uddin, K., Balasubramaniam, A. S., & Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. Geotechnical Engineering, 28, 89-119.
Xie, S., Liu, S., Du, G., & Liu, Z. (2011). Improvement in strength characteristics of soft marine clay by Bidirectional Dry Mixing Method. In Remote Sensing, Environment and Transportation Engineering (RSETE), International Conference on, pp. 3202-3205. IEEE.
Zhang, R. J., Santoso, A. M., Tan, T. S., & Phoon, K. K. (2013). Strength of high water-content marine clay stabilized by low amount of cement. Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2170-2181.
Zhang, T., Yue, X., Deng, Y., Zhang, D., & Liu, S. (2014). Mechanical behaviour and micro-structure of cement - stabilised marine clay with a metakaolin agent. Construction and Building Materials, 73, 51-57.
Zhang, T., Cai, G., Liu, S., & Puppala, A. J. (2016). Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product. KSCE Journal of Civil Engineering, 1-12.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top