跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉孟涵
研究生(外文):Meng-Han Liu
論文名稱:整合跑道使用之機門指派問題
論文名稱(外文):An Integrated Assignment Problem Considering Both Airport Gate and Runway Usage
指導教授:許聿廷許聿廷引用關係
指導教授(外文):Yu-Ting Hsu
口試委員:朱致遠沈宗緯
口試委員(外文):Chih-Yuan ChuChung-Wei Shen
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:機門指派跑道容量時空網路基因演算法
外文關鍵詞:gate assignmentrunway capacitytime-space networkgenetic algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在機場的空側部分包含兩大部分的運作,機門指派與跑道使用,此兩部分的運作息息相關、互相影響,而空側的運作是影響機場服務水準的關鍵,不僅影響了旅客對機場的滿意程度,也影響了整個機場的容量,對於機場未來的發展也佔有重要的影響能力。根據過往機門指派問題的相關文獻中,文獻都著重在機門的指派上面,沒有問題將機門與跑道做綜合性的考慮。因此,本研究的機門指派問題整合了機門與跑道的使用,在機場現有的基礎設施下(機門數量、跑道數量),已知班機的起飛與降落班表,透過模式的指派,可以找到尖峰時刻時機門上是否還有空閒時間來服務更多班機,藉此希望可以提升機場空側的效率並提升機場的容量。
本研究利用時空網路的技巧,將機場空側部分的指派轉換成零壹的整數規劃數學模式,且因為時空網路的節點與節線隨著欲指派模擬的時間增長而迅速地成長,因此本研究使用基因演算法來使得求解效率更快。最後,本研究將模式套入兩個案例分析,分別是臺北松山國際機場以及臺灣桃園國際機場,可以發現松山機場目前的容量是足夠的,若旅客量及飛機起降量提升也是有足夠的空間容納。然而,桃園機場在尖峰時刻面臨了機門短缺,又因為兩條跑道設施的關係使得兩條跑道無法獨立運作,影響了跑道的容量。根據案例的分析,本研究提出了結論與建議供後續研究參考。


The assignment of flights over gates and runways can be critical for the operation of an airport, which affects its capacity, scheduling and deployment of the associated airlines, and consequently the level of service to passengers. The assignment problem can be complicated because of numerous possible usage patterns over the spatiotemporal combinations of facility occupation, especially when there exists the dependence between runways and gates and/or runways themselves. However, such dependence has been rarely discussed in the literature. As a result, this study proposed an analytical framework to model comprehensive assignment over both gate assignment and runway usage. The time-space network was designed to present the operation framework. The mathematical binary integer programing was formulated to solve the problem. However, the number of time nodes in the time-space network increases rapidly, causing great computational inefficiency. Therefore, genetic algorithm is approached to solve this problem much more effectively and efficiently. Two case studies on Taipei Songshan Airport (TSA) and Taoyuan International Airport (TPE) are applied to the model in this research. Empirical case studies indicated that the developed model can help airport to assign the flights and find out the idle time on gate to serve more additional flights under current infrastructure layout. For the airport which suffer the congestion or shortage on gate, the model can be also be used to solve the problem.

口試委員審定書…….. I
誌謝……………… II
摘要……………… IV
ABSTRACT…….. V
TABEL OF CONTENT VI
LIST OF FIGURES VIII
LIST OF TABLES IX
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Research Objectives 2
1.3 Thesis Organization 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Current Operation of Taoyuan International Airport (TPE) 5
2.2 Gate Assignment Problem 9
2.3 Gate Re-assignment Problem 12
2.4 Solution Method or Algorithm in the Problem 13
2.5 Summary of Literature Review 18
CHAPTER 3 PROBLEM STATEMENT AND METHODOLOGY 20
3.1 Problem Statement 20
3.2 Time-space network 21
3.2.1 Design of Time-space Network 21
3.2.2 Objective of Time-space Network 23
CHAPTER 4 BINARY INTEGER PROGRAMING (BIP) MODEL 24
CHAPTER 5 SOLUTION APPROACH: GENETIC ALGORITHM 34
5.1 Chromosome Structure 35
5.2 Crossover Operator 36
5.3 Mutation Operator 37
5.3.1 Mutation I 38
5.3.2 Mutation II 38
5.3.4 Mutation III 39
5.4 Fitness Pool 39
CHAPTER 6 CASE STUDY 42
6.1 Taipei Songshan Airport (TSA) 43
6.1.1 Parameters Description and Model Design for TSA 43
6.1.2 Results for TSA 44
6.2 Taoyuan International Airport (TPE) 47
6.2.1 Parameters Description and Model Design for TPE 47
6.2.2 Results for TPE 48
CHAPTER 7 CONCLUSIONS AND FUTURE WORK 52
7.1 Conclusion 52
7.2 Future Research 53
REFERENCE…….. 55




Chu, C. R. (2001), Minimizing the Number of Gates in an Airport, Master Thesis, National Central University, Department of Civil Engineering.
Ding, H., Lim, A., Rodrigues, B., and Zhu, Y. (2005), “The over-constrained airport gate assignment problem”, Computers & Operations Research, Vol. 32, No. 7, pp. 1867-1880.
Dorndorf, U., Drexl, A., Nikulin, Y., and Pesch, E. (2007), “Flight gate scheduling: State-of-the-art and recent developments”, Omega, Vol. 35, No. 3, pp. 326-334.
Ford Jr, L. R., and Fulkerson, D. R. (2015). Flows in networks. Princeton university press.
Gu, Y., and Chung, C. A. (1999), “Genetic algorithm approach to aircraft gate reassignment problem”, Journal of Transportation Engineering, Vol. 125, No. 5, pp. 384-389.
Haghani, A., and Chen, M. (1998), “Optimizing gate assignments at airport terminals”, Transportation Research Part A: Policy and Practice, Vol. 32, No. 6, pp. 437-454.
Hou, Y. C. (2007), An Approach for Dynamic Airport Gate Assignments for Stochastic Flight Delays, Master Thesis, National Central University, Department of Civil Engineering.
Hu, X. B., and Paolo, E. D. (2007), “An efficient genetic algorithm with uniform crossover for the multi-objective airport gate assignment problem”, 2007 IEEE Congress on Evolutionary Computation.
Kim, S. H., Feron, E., and Clarke, J. (2013). “Gate assignment to minimize passenger transit time and aircraft taxi time”, Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, pp. 467-475.
Lai, Y. S. (2007), “An approach for conformity airport gate assignments for stochastic flight delays and decomposition algorithm”, Master Thesis, National Central University, Department of Civil Engineering
Lu, H. A. (2001), “Optimized airport gate reassignment for delayed flights”, Transportation Planning Journal, Vol. 30, No. 4, pp. 849-870.
Maharjan, B., and Matis, T. I. (2011), “An optimization model for gate reassignment in response to flight delays”, Journal of Air Transport Management, Vol. 17, No. 4, pp. 256-261.
Marinelli, M., Palmisano, G., Dell’Orco, M., and Ottomanelli, M. (2015), “Fusion of two metaheuristic approaches to solve the flight gate assignment problem”, Transportation Research Procedia, Vol. 10, pp. 920-930.
Policy, A. C. I. (2009), "Recommended Practices Handbook."
Tang C. W. (2009), “Robust optimization gate assignments under stochastic flight delays”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 21, No. 1, pp. 61-71.
Tang, C. W. (2009), “Real-time gate assignments under temporary gate shortages and stochastic flight delays”, 2009 IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, pp. 267-271
Tang, C. W., and Wang, W. C. (2012), “Gate assignments considering connections between arrival and departure flights at the taiwan taoyuan international airport”, Journal of the Chinese Institute of Transportation, Vol. 24 No. 3, pp. 305 – 330.
Tang, C., Yan, S., and Hou, Y. (2009), “A gate reassignment framework for real time flight delays”, Quarterly Journal of Operations Research, Vol. 8, No. 3, pp. 299-318.
TPE, 2016, Taiwan Taoyuan International Airport, Available at: http://www.taoyuan-airport.com/english/terminal3#fa20ab6a-2ba7-4fe0-98b9-88da1f39063d, Accessed 19 May 2016.
Yan, S., and Huo, C. (2001), “Optimization of multiple objective gate assignments”, Transportation Research Part A: Policy and Practice, Vol. 35, No. 5, pp. 413-432.
Yan, S., and Tang, C. (2007), “A heuristic approach for airport gate assignments for stochastic flight delays”, European Journal of Operational Research, pp. 547-567.
Yan, S., Shieh, C., and Chen, M. (2002), “A simulation framework for evaluating airport gate assignments”, Transportation Research Part A: Policy and Practice, Vol. 36, No. 10, pp. 885-898.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top