跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張博竣
研究生(外文):Bo-Jun Chang
論文名稱:以邊界積分方程法正算尤拉梁問題
論文名稱(外文):By Using Bounday Integral Equation Method to Solve The Direct Euler-Bernoulli Beam Problem
指導教授:劉進賢
指導教授(外文):Chein-Shan Liu
口試委員:郭仲倫陳永為
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:95
中文關鍵詞:邊界積分方程法(BIEM)尤拉梁伴隨Trefftz測試函數廣義格林第二恆等式自我伴隨運算子
外文關鍵詞:Boundary Integral Equation Method(BIEM)Euler-Bernoulli BeamAdjoint Trefftz Test FunctionsGeneralized Green’s Second IdentitySelf-adjoint Operators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
橋梁的振動在土木工程中是一個非常重要的議題,而橋梁可以簡化為尤拉梁模型來作為分析。本文提供的分析方法為邊界積分方程法(BIEM),其搭配了伴隨Trefftz測試函數為基底作係數的展開,而伴隨Trefftz測試函數本身是滿足齊性控制方程式和邊界條件的,因此能夠消除吉布斯現象和避免矩陣運算,也就是說能夠在誤差極小的情況下得到數值解。邊界積分方程法能將難以求得解析解的微分方程式問題轉換成依靠邊界條件來描述整個場的等效積分方程式問題。最後由數值算例可以知道邊界積分方程法在追求高精度、高效率的情況下是可行的。

In this thesis we numerically solve the direct Euler-Bernoulli beam problems by using a boundary integral equation method(BIEM) which is based on the generalized Green’s second identity and the self-adjoint operators. In the BIEM, we choose a set of adjoint Trefftz test functions which can be obtained by the method of separation of variables. In the numerical algorithm, we can expand a trial solution by using the bases satisfying the homogeneous governing equation and the boundary conditions simultaneously. To satisfy the above two properties of the bases, we use the adjoint Trefftz test functions as the bases and impose the specified boundary condition. By using these bases, moreover, we can eliminate the Gibbs phenomenon and avoid the matrix computations. Finally, there are several numerical examples to validate the effectiveness of the proposed scheme in this thesis and the results show that the BIEM is a highly accurate numerical method.

口試委員會審定書i
誌謝i
摘要iii
ABSTRACTiv
目錄v
圖目錄viii
表目錄x
第一章 緒論1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 3
1.4 論文架構 4
第二章 理論基礎 5
2.1 尤拉梁理論(Euler-Bernoulli Beam Theory) 5
2.2 自我伴隨運算子(Self-adjoint Operators) 7
2.3 廣義格林第二恆等式(Generalized Green’s Second Identity) 8
2.4 伴隨Trefftz測試函數(Adjoint Trefftz Test Functions) 10
2.4.1 簡支梁(simple beam) 12
2.4.2 懸臂梁(cantilever beam) 13
2.4.3 兩端固定梁(clamped beam) 15
2.4.4 一端固定,一端簡支(clamped-pinned beam) 16
2.4.5 一端固定,一端導向支承(clamped-guided beam) 18
2.4.6 一端簡支,一端導向支承(pinned-guided beam) 19
2.5 擬時間積分法(The Fictitious Time Integration Method) 21
2.6 振態正交性(Mode Orthogonality) 26
2.7 振態疊加法(Mode Superposition Method ) 27
2.8 常微分方程式的數值解法(Numerical Methods for Ordinary Differential Equation ) 28
2.9 共軛梯度法(Conjugate Gradient Method) 30
2.10 全局適應高斯-克朗羅德積分(Global Adaptive Quadrature Using Gauss-Kronrod) 31
2.11 傅立葉分析(Fourier Analysis) 34
2.12 瑞利-里茲法(Rayleigh-Ritz method) 37
第三章 邊界積分方程法(BIEM) 39
3.1 等斷面尤拉梁(齊性邊界條件) 39
3.1.1 試驗解(Trial Solution) 41
3.2 等斷面尤拉梁(非齊性邊界條件) 44
3.2.1 簡支梁的非齊性邊界條件 44
3.2.2 一端固定一端簡支的非齊性邊界條件 46
3.2.3 非齊性邊界條件下BIEM搭配伴隨Trefftz測試函數總結 47
3.3 非均勻斷面尤拉梁(齊性邊界條件) 48
第四章 數值算例 53
4.1 數值算例一 53
4.2 數值算例二 55
4.3 數值算例三 56
4.4 數值算例四 57
4.5 數值算例五 57
4.6 數值算例六 58
4.7 數值算例七 58
4.8 數值算例八 60
4.9 數值算例九 61
4.10 數值算例十 63
4.11 算例表 64
4.12 算例圖 69
第五章 結論與未來工作 86
參考文獻 88
附錄A 91
附錄B 92
附錄C 93
附錄D 95


[1]Artur Maciag and Anna Pinwinska, Solution of the direct and inverse problems for beam, Computational and Applied Mathematics, Volume 35, Issue 1, pp 187-201 (2014).
[2]Anil K. Chopra, Dynamics of structures: (theory and applications to earthquake engineering), Prentice-Hall, Englewood Cliffs, NJ (1995).
[3]C. S. Liu, A BIEM using the Trefftz test functions for solving the inverse Cauchy and source recovery problems, Engineering Analysis with Boundary Elements 62:pp. 177-185 (2016).
[4]C. S. Liu, A global boundary integral equation method for recovering space-time dependent heat source, International Journal of Heat and Mass Transfer 92:1034-1040 (2016).
[5]C. S. Liu, A global domain/boundary integral equation method for the inverse wave source and backward wave problems, Inverse Problems in Science and Engineering (2016).
[6]C. S. Liu; Atluri, S. N., A novel time integration method for solvinga large system of non-linear algebraic equations.CMES: Computer Modeling inEngineering & Sciences, vol. 31,71-83 (2008).
[7]C. S. Liu, A Lie-group adaptive differential quadrature method to identify an unknown force in an Euler–Bernoulli beam equation, Acta Mech 223,2207-2223 (2012).
[8]C. A. Brebbia, The Boundary Element Method for Engineers, Pentech Press, London (1978).
[9]David Kahaner, Cleve Moler, Stephen Nash, Numerical Methods and Software, Prentice Hall, 153-157 (1989).
[10]Erwin Kreyszig, Advanced Engineering Mathematics, Wiley, 10th edition,474-568 (2011).
[11]G. T. Symm, Integral equation methods in potential theory, II, Proc. Roy. Soc., Ser. A 275, 33-46 (1963).
[12]George Lindfield and John Penny, Numerical Methods: Using MATLAB, Academic Press, 3rd edition, 233-276 (2012).
[13]L.F. Shampine, Vectorized adaptive quadrature in MATLAB, Journal of Computational and Applied MathematicsVolume 211, Issue 2, 131-140 (2008).
[14]M. A. Jawson , Integral equation methods in potential theory, I, Proc. Roy. Soc., Ser. A 275, 23-32 (1963).
[15]Prem K. Kytbe, An Introduction to Boundary Element Methods, CRC Press, 15-18 (1995).
[16]Raymond W. Clough and Joseph Penzien, Dynamics of Structures, Mcgraw-Hill College, 3rd edition, 389-390 (1995).
[17]Serge Nicaise & Ouahiba Zair, Determination of Point Sources in Vibrating Beams by Boundary Measurements: Identifianility,Stability, And Reconstruction Results, Electronic Journal of Differential Equations, Vol. 2004, No. 20, pp. 1–17.ISSN: 1072-669 (2004).
[18]T . A. Cruise and F. J. Rizzo, A direct formulation and numerical solution of the general transient elasto-dynamic problem, I, J. Math. Anal. Appl. 22, 244-259 (1968).

[19]Trefftz,E. , Ein Gegenstuck zum Ritzschen Verfahren, in Proceedings 2nd International Congress of Applied Mechanics, Zurich, pp.131-137 (1926).
[20]Zill, Differential Equations with Boundary-Value Problems, Brooks Cole, 7th edition (2008).
[21]徐榮昌,「應用Adomian修正分解法於梁自由振動之分析」,國立成功大學機械工程學系博士論文,陳朝光教授指導,台南,2009年。




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top