[1] Ahmed, S. F. U., & Maalej, M. (2009). Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites.Construction and Building Materials, 23(1), 96-106.
[2] Aitcin, P. C. (1993). High-performance concrete demystified. Concrete International, 15(1), 21-26.
[3] Alonso, C., Andrade, C., Castellote, M., & Castro, P. (2000). Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cement and Concrete research, 30(7), 1047-1055.
[4] Alwan, J. M., Naaman, A. E., & Guerrero, P. (1999). Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concrete Science and Engineering, 1(1), 15-25.
[5] Andrade, C., Castelo, V., Alonso, C., & Gonzalez, J. A. (1986). The determination of the corrosion rate of steel embedded in concrete by the polarization resistance and AC impedance methods. In Corrosion effect of stray currents and the techniques for evaluating corrosion of rebars in concrete. ASTM International.
[6] Andrade, C., & Martínez, I. (2010). 14 - Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures, In Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing, Volume 2, Pages 284-316, Non-Destructive Evaluation of Reinforced Concrete Structures.
[7] Ann, K. Y., Ahn, J. H., & Ryou, J. S. (2009). The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials, 23(1), 239-245.
[8] Aslani, F., Nejadi, S., & Samali, B. (2013, May). Energy dissipation in self-compacting concrete with or without fibers in compression. In Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, Illinois, USA.
[9] ASTM B117-11, Standard Practice for Operating Salt Spray (Fog) Apparatus.
[10] ASTM B368 -09(2014), Standard Test Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (CASS Test).
[11] ASTM C1018-97, Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading).
[12] ASTM C1609/C1609M-10, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading).
[13] ASTM C1202-12, Standard Test Method for Electrical Indication of Concrete''s Ability to Resist Chloride Ion Penetration.
[14] ASTM C33-99a, Standard Specification for Concrete Aggregates.
[15] ASTM C39/C39M-15a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
[16] ASTM C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson''s Ratio of Concrete in Compression.
[17] ASTM C496/C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
[18] ASTM C78/C78M-15a, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).
[19] ASTM C876-15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.
[20] ASTM G50-10(2015), Standard Practice for Conducting Atmospheric Corrosion Tests on Metals.
[21] ASTM G85-11, Standard Practice for Modified Salt Spray (Fog) Testing.
[22] Bencardino, F., Rizzuti, L., Spadea, G., & Swamy, R. N. (2008). Stress-strain behavior of steel fiber-reinforced concrete in compression. Journal of Materials in Civil Engineering, 20(3), 255-263.
[23] Bentur, A., Diamond, S., & Mindess, S. (1985). Cracking processes in steel fiber reinforced cement paste. Cement and Concrete Research, 15(2), 331-342.
[24] Bentur, A., Diamond, S., & Mindess, S. (1985). The microstructure of the steel fibre-cement interface. Journal of Materials Science, 20(10), 3610-3620.
[25] Broomfield, J. P., Rodriguez, L.M. Ortega, and A. M. Garcia. (1993). Corrosion Rate and Life Prediction for Reinforced Concrete Structures. Proceedings of Structure Faults and Repairs.
[26] Broomfield, J. P. (1997). Corosion of Steel in Concrete. Understanding Investigation and Repair.
[27] Cady, P. D., & Weyers, R. E. (1983). Chloride penetration and the deterioration of concrete bridge decks. Cement, concrete and aggregates, 5(2), 81-87.
[28] Chaube, R., Kishi, T., & Maekawa, K. (2005). Modelling of concrete performance: Hydration, microstructure and mass transport. CRC Press.
[29] Climent, M. A., de Vera, G., López, J. F., Viqueira, E., & Andrade, C. (2002). A test method for measuring chloride diffusion coefficients through nonsaturated concrete: Part I. The instantaneous plane source diffusion case. Cement and concrete Research, 32(7), 1113-1123.
[30] CNS 1078,水硬性水泥化學分析法,中華民國國家標準。
[31] CNS 1240,混凝土粒料,中華民國國家標準。
[32] CNS 12874,環境試驗法(電氣、電子)–鹽霧(循環)試驗,中華民國國家標準。
[33] CNS 13401,金屬及合金之腐蝕-大氣腐蝕性之分類,中華民國國家標準。
[34] CNS 13753,金屬及合金之腐蝕-大氣腐蝕性(測定標準試片之腐蝕速率以評估腐蝕性),中華民國國家標準。
[35] CNS 13754,金屬及合金之腐蝕-大氣腐蝕性(污染之測定),中華民國國家標準。
[36] CNS 14122,「金屬及合金之腐蝕-大氣腐蝕–試片腐蝕生成物清除法」,中華民國國家標準。
[37] CNS 14123,「金屬及合金之腐蝕-大氣腐蝕測試(現場測試之一般要求)」,中華民國國家標準。
[38] CNS 14703,硬固水泥砂漿及混凝土中水溶性氯離子含量試驗法,中華民國國家標準。
[39] CNS 14842,高流動性混凝土坍流度試驗法,中華民國國家標準。
[40] CNS 15200-7-8,塗料一般試驗法-第7-8部:塗膜之長期性能-耐循環腐蝕試驗法-鹽水噴霧/乾燥/濕潤,中華民國國家標準。
[41] CNS 3627,環境試驗法(電氣、電子)–鹽霧試驗,中華民國國家標準。
[42] CNS 8886,鹽水噴霧試驗法,中華民國國家標準。
[43] Collepardi, M., Marcialis, A., & Turriziani, R. (1972). Penetration of chloride ions into cement pastes and concretes. Journal of the American Ceramic Society, 55(10), 534-535.
[44] Collepardi, M. (1995). Quick method to determine free and bound chlorides in concrete. In RILEM International Workshop on Chloride penetration into concrete (pp. 10-16). Nilsson, L. O., & Ollivier, J. P. (Eds.) RILEM Publications SARL.
[45] Concrete, C., & Australia, A. (2009). Chloride resistance of concrete. Report, June.
[46] Dhir, R. K., Jones, M. R., & McCarthy, M. J. (1993). Quantifying chloride-induced corrosion from half-cell potential. Cement and Concrete Research,23(6), 1443-1454.
[47] Dhir, R. K., El-Mohr, M. A. K., & Dyer, T. D. (1996). Chloride binding in GGBS concrete. Cement and Concrete Research, 26(12), 1767-1773.
[48] Dong, Z. Y., & Li, Q. B. (2004). An Interfacial Pullout Model for Hooked Fiber in Cementitious Materials. Engineering Mechanics, 21, 102ó107.
[49] Enevoldsen, J. N., Hansson, C. M., & Hope, B. B. (1994). Binding of chloride in mortar containing admixed or penetrated chlorides. Cement and Concrete Research, 24(8), 1525-1533.
[50] Ezeldin, A. S., & Balaguru, P. N. (1992). Normal-and high-strength fiber-reinforced concrete under compression. Journal of materials in civil engineering, 4(4), 415-429.
[51] Fanella, D. A., & Naaman, A. E. (1985). Stress-strain properties of fiber reinforced mortar in compression. Journal of The American Concrete Institute, 82(4), 475-483.
[52] Fantilli, A. P., Mihashi, H., & Vallini, P. (2009). Multiple cracking and strain hardening in fiber-reinforced concrete under uniaxial tension. Cement and Concrete Research, 39(12), 1217-1229.
[53] Feng, Q. (1996) High-Performance Concrete. Building Industry Press. Beijing.
[54] Fraczek, J. (1987). Review of Electrochemical Principles as Applied to Corrosion of Steel in a Concrete or Grout Environment. Special Publication,102, 13-24.
[55] Fukushima, T., Yoshizaki, Y., Tomosawa, F., & Takahashi, K. (1998). Relationship between neutralization depth and concentration distribution of CaCO3-Ca (OH) 2 in carbonated concrete. Special Publication, 179, 347-364.
[56] Grubb, J. A., Blunt, J., Ostertag, C. P., & Devine, T. M. (2007). Effect of steel microfibers on corrosion of steel reinforcing bars. Cement and concrete research, 37(7), 1115-1126.
[57] Grünewald, S. (2004). Performance-based design of self-compacting fibre reinforced concrete. TU Delft, Delft University of Technology.
[58] Güneyisi, E., Gesoğlu, M., Karaboğa, F., & Mermerdaş, K. (2013). Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Composites Part B: Engineering, 45(1), 1288-1295.
[59] Hong, K., & Hooton, R. D. (1999). Effects of cyclic chloride exposure on penetration of concrete cover. Cement and Concrete Research, 29(9), 1379-1386.
[60] Hooton, R. D., & McGrath, P. F. (1995). Issues related to recent developments in service life specifications for concrete structures. Chloride Penetration into Concrete. RILEM, L.O. Nilsson and J.P. Olivier, Eds., pp. 388-397.
[61] Hsu, L. S., & Hsu, C. T. (1994). Stress-strain behavior of steel-fiber high-strength concrete under compression. Structural Journal, 91(4), 448-457.
[62] Hu, Y. J., & Du, Y. L. (2011). Effect of mineral admixtures and water/binder ratios on the resistance to the chloride ions penetration into concrete. InApplied Mechanics and Materials (Vol. 99, pp. 758-761). Trans Tech Publications.
[63] Hussain, S. E., & Al-Saadoun, S. S. (1991). Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete. Cement and Concrete Research, 21(5), 777-794.
[64] Hussain, S. E. (1994). Corrosion resistance performance of fly ash blended cement concrete. Materials Journal, 91(3), 264-272.
[65] ISO 9223. (1992). Corrosion of metals and alloys - Corrosivity of atmosphere - Classification, determination and estimation.
[66] ISO 9224. (1992). Corrosion of metals and alloys - Corrosivity of atmospheres - Guiding values for the corrosivity categories.
[67] ISO 9225. (1992). Corrosion of metals and alloys -- Corrosivity of atmospheres -- Measurement of pollution.
[68] ISO 9226. (1992). Corrosion of metals and alloys -- Corrosivity of atmospheres -- Determination of corrosion rate of standard specimens for the evaluation of corrosivity.
[69] Kim, D. J., El-Tawil, S., & Naaman, A. E. Correlation between single fiber pullout and tensile response of FRC composites with high strength steel fibers. In: Reinhardt, H. W. & Naaman, A. (2007). Fifth International RILEM Workshop on High Performance Fiber-Reinforced Cement Composites: HPFRCC5. Rilem Proceedings pro053, pp. 67-76.
[70] Kim, M. Y., Yang, E. I., & Yi, S. T. (2013). Application of the colorimetric method to chloride diffusion evaluation in concrete structures. Construction and Building Materials, 41, 239-245.
[71] Kwan, A. K., & Wong, H. H. (2005). Durability of Reinforced Concrete Structures, Theory vs Practice. Department of Civil Engineering, The University of Hong Kong.
[72] Leng, F., Feng, N., & Lu, X. (2000). An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 30(6), 989-992.
[73] Li, V. C., Wang, Y., & Backer, S. (1990). Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix.Composites, 21(2), 132-140.
[74] Liu, Y., & Weyers, R. E. (2003). Comparison of guarded and unguarded linear polarization CCD devices with weight loss measurements. Cement and concrete research, 33(7), 1093-1101.
[75] Luo, R., Cai, Y., Wang, C., & Huang, X. (2003). Study of chloride binding and diffusion in GGBS concrete. Cement and Concrete Research, 33(1), 1-7.
[76] Mangat, P. S., & Gurusamy, K. (1988). Corrosion resistance of steel fibres in concrete under marine exposure. Cement and Concrete Research, 18(1), 44-54.
[77] Maruya, T., Matsuoka, Y., & Tangtermsirikul, S. (1992). Simulation of chloride movement in hardened concrete. Concrete Library of JSCE, 20, 57-70.
[78] Maruya, T., Tangtermsirikul, S., & Matsuoka, Y. (1998). Modeling of chloride ion movement at the surface layer of hardened concrete. In PROCEEDINGS-JAPAN SOCIETY OF CIVIL ENGINEERS (pp. 79-96). DOTOKU GAKKAI.
[79] Mehta, P. K. (1986). Concrete. Structure, properties and materials. Englewood Hills, NJ: Prentice-Hall.
[80] Mehta, P. K. & Monteiro, P. J. M. (1993). Concrete: Microstructure, Properties, and Materials. Prentice-Hall.
[81] Mendis, P. A., & Panagopoulos, C. (2000, January). Applications of high strength concrete in seismic regions. In 12th World Conference on Earthquake Engineering (12WCEE), Auckland, New Zealand.
[82] Metals Handbook – Corrosion, “Metals Handbook Ninth Ed.”,Vol.13 , ASM International , Ohio, 1988 ASM International Committee. (1988). Metals Handbook ,Ninth Edition - Corrosion. Vol.13. ASM, Metals Park, OH.
[83] Michihiko, Abe and Hitoshi, Shiohara. “New RC Materials.” In Aoyama, H. (2001), .Design of modern highrise reinforced concrete structures, (Vol. 3). World Scientific.
[84] Millard, S. G., & Harrison, J. (1989). Measurement of the electrical resistivity of reinforced concrete structures for the assessment of corrosion risk. Brit. J. Nondestructive Testing, 31(11), 521-617.
[85] Mindess, S., & Young, J. F. (1981). Concrete. Prentice Hall.
[86] Mohammed, T. U., Yamaji, T., & Hamada, H. (2002). Chloride diffusion, microstructure, and mineralogy of concrete after 15 years of exposure in tidal environment. ACI Materials Journal, 99(3), 256-263.
[87] Morse, D. C., & Williamson, G. R. (1977). Corrosion behavior of steel fibrous concrete (No. CERL-TR-M-217). CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL.
[88] Neville, A.M. (1996). Properties of Concrete, 4th edn, New York, NY, John Wiley & Sons, p. 797. A.M. Neville, “Properties of Concrete”, 4th Ed., Longman, New York.
[89] Ngala, V. T., Page, C. L., Parrott, L., & Yu, S. W. (1995). Diffusion in cementitious materials: II, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30% PFA pastes. Cement and Concrete Research, 25(4), 819-826.
[90] Oluokun, F. (1991). Prediction of concrete tensile strength from its compressive strength: an evaluation of existing relations for normal weight concrete. Materials Journal, 88(3), 302-309.
[91] Otsuka, K., Mihashi, H., Kiyota, M., Mori, S., & Kawamata, A. (2003). Observation of multiple cracking in hybrid FRCC at micro and meso levels.Journal of Advanced Concrete Technology, 1(3), 291-298.
[92] Otsuki, N., Nagataki, S., & Nakashita, K. (1992). Evaluation of AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials. ACI Materials Journal, 89(6).
[93] Ou, Y. C., Tsai, M. S., Liu, K. Y., & Chang, K. C. (2011). Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. Journal of Materials in Civil Engineering, 24(2), 207-215.
[94] Polder, R. B. (2001). Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Construction and building materials, 15(2), 125-131.
[95] Quanbing, W. X. X. L. Y., & Shiyuan, H. (1991). THE DIFFUSION EQUATION OF Cl~ IONS IN CEMENT MORTAR. Journal of building materials, 4, 004.
[96] Raupach, M., & Dauberschmidt, C. (2003). Critical Chloride Content for the Corrosion of Steel Fibres in Artificial Concrete Pore Solutions. Special Publication, 212, 165-180.
[97] Rodriguez, J., & Andrade, C. (1990). Load-bearing capacity loss in corroding structures. In Proceedings of ACI convention, Toronto.
[98] Schiessl P (1988), Corrosion of Steel in Concrete, RILEM Report. Report of the Technical Committee 60-CSC, London, Chapman & Hall.
[99] Shah, S. P. (2000). High performance concrete: past, present and future. High Performance Concrete-Worka-bility, Strength and Durability. Hong Kong: Hong Kong University of Science and Technology, 3-29.
[100] Shalon, R., & Rapheal, M. (1959, June). Influence of sea water on corrosion of reinforcement. In Journal Proceedings (Vol. 55, No. 6, pp. 1251-1268).
[101] Sidney, M., & Francis, Y. J. (1981). Concrete. Prentice-Hall, N. J..
[102] Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669-673.
[103] Stern, M., & Geary, A. L. (1957). Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. Journal of the electrochemical society, 104(1), 56-63.
[104] Sugano, S., Kimura, H., & Shirai, K. (2007). Study of New RC Structures Using Ultra-High-Strength Fiber-Reinforced Concrete (UFC)-The Challenge of Applying 200MPa UFC to Earthquake Resistant Building Structures. Journal of advanced concrete technology, 5(2), 133-147.
[105] Thomas, M. D., & Bamforth, P. B. (1999). Modelling chloride diffusion in concrete: effect of fly ash and slag. Cement and Concrete Research, 29(4), 487-495.
[106] Thomas, J., & Ramaswamy, A. (2007). Mechanical properties of steel fiber-reinforced concrete. Journal of materials in civil engineering, 19(5), 385-392.
[107] Uhlig, H.H. and Revie, R.W. (1985). Corrosion and Corrosion Control. New York: Wiley, pp.28-35.
[108] Wafa, F. F., & Ashour, S. A. (1992). Mechanical properties of high-strength fiber reinforced concrete. Materials Journal, 89(5), 449-455.
[109] William D. Callister. (2001) Fundamentals of materials Science and Engineering.
[110] Winslow, D. N., Cohen, M. D., Bentz, D. P., Snyder, K. A., & Garboczi, E. J. (1994). Percolation and pore structure in mortars and concrete. Cement and concrete research, 24(1), 25-37.
[111] Xu, B., Ju, J. W., & Shi, H. (2010). Progressive micromechanical modeling for pullout energy of hooked-end steel fiber in cement-based composites.International Journal of Damage Mechanics, 1056789510385260.
[112] Xu, B., Ju, J. W., & Shi, H. S. (2011). Micromechanical modeling of fracture energy for hooked-end steel fiber reinforced cementitious composites.International Journal of Damage Mechanics, 1056789510397072.
[113] Young, J. F. (1988). Review of the Pore Structure of Cement Paste and Concrete and its Influence on Permeability. Special Publication, 108, 1-18.
[114] Yuan, Q., Shi, C., He, F., De Schutter, G., Audenaert, K., & Zheng, K. (2008). Effect of hydroxyl ions on chloride penetration depth measurement using the colorimetric method. Cement and concrete research, 38(10), 1177-1180.
[115] 王又德 (2015),高強度鋼纖維鋼筋混凝土柱軸壓及韌性行為研究,碩士論文,國立台灣大學土木工程學研究所。[116] 王駿紳 (2012),快速評估貯鹽浸漬試驗之水泥砂漿氯離子擴散行為,碩士論文,國立臺灣海洋大學材料工程研究所。[117] 台灣混凝土學會 (2014),「TCI高強度鋼筋及其配件規範審查報」。
[118] 台灣腐蝕分類資訊系統-板狀試片腐蝕速率與腐蝕環境分類 (2009),港灣技術研究中心,(http://act.ihmt.gov.tw:8080/localpalte.asp)
[119] 李俊鋼 (2008),添加鋼纖維對鋼筋腐蝕量測訊號影響之探討,碩士學位論文,國立臺灣海洋大學河海工程學系。
[120] 吳建國、黃然、梁明德等 (1993),混凝土橋梁鹽分腐蝕問題之研究,交通台灣區國道新建工程局。
[121] 邱永芳、謝明志、張道光、林雅雯、楊仲家、詹穎雯、劉玉雯、卓世偉、陳育聖、黃進國、汪書瑜、袁瑜鎂、羅冠顯 (2011),研發抗磨耗、抗衝擊及耐久性橋墩材料之研究,交通部運輸研究所。
[122] 林永芳 (2007),添加矽灰及鋼纖維對混凝土氯離子滲透與腐蝕行為之探討,碩士學位論文,國立臺灣海洋大學河海工程學系。[123] 林致緯 (2006),以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為」,碩士學位論文,國立臺灣海洋大學材料工程研究所。[124] 林維明 (1993), 高爐石水泥混凝土耐海水試驗, 混凝土技術研討會論文輯, pp. 202-215.
[125] 林維明 (1998),鋼筋混凝土腐蝕要因及對策之探討,港灣技術研究所。
[126] 林德威 (2010),乾濕循環下不同水膠比及爐石含量混凝土之氯離子滲透行為,碩士論文,國立台灣大學土木工程學研究所。[127] 官家緯 (2011),粗粒料用量對混凝土傳輸行為之影響,碩士學位論文,國立臺灣海洋大學材料工程研究所。[128] 洪定海 (1988),混凝土中鋼筋的腐蝕與保護,中國鐵道出版社。
[129] 柯賢文 (1995),腐蝕及其防治,全華科技圖書有限公司.
[130] 陳立軍, 孔令煒, 王德君, 丁銳, & 梁銳 (2009),混凝土滲透性概念的細化及其測試方法. 混凝土, (1), 40-42.
[131] 陳柱清、柯正龍、羅建明、羅俊雄 (2009),臺灣地區大氣腐蝕劣化因子調查研究(2/2),交通部運輸研究所。
[132] 郭耀仁 (2012),高強度鋼纖維混凝土的力學性質與圍束效應之研究,碩士論文,國立台灣大學土木工程學系。[133] 曹楚南 (2000),悄悄進行的破壞: 金屬腐蝕,清華大學出版社有限公司。
[134] 張廷峻 (2013),探討鹽霧試驗與貯鹽試驗對混凝土耐久性之關聯,碩士學位論文,國立臺灣海洋大學材料所。
[135] 張雲蓮、史美倫、陳志源 (2005),鋼纖維砂漿的電化學振蕩現象,建築材料學報,Vol. 8 , No. 5。
[136] 梁智信 (2013),濱海地區混凝土中氯離子擴散行為之研究,博士學位論文,國立臺灣海洋大學材料工程研究所。[137] 楊仲家、卓世偉 (2004),混凝土耐久性試驗研究,內政部建築研究所。
[138] 詹穎雯 (1986),環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究,碩士論文,國立台灣大學土木工程學系。[139] 趙國藩、彭少民、黃承達 (1999),鋼纖維混凝土結構,中國建築工業出版社。
[140] 劉秉京 (2007),混凝土結構耐久性設計,人民交通出版社。
[141] 劉彥志 (2011),飛灰混凝土傳輸行為之研究,碩士論文,國立臺灣海洋大學材料工程研究所。[142] 蔡得時 (1992),利用氯化物之滲透評估混凝土在海洋環境之品質及保護層之厚度,防蝕工程,6(2),47-56。
[143] 鍾惠玲 (2007),不同劣化環境對結構用鋼腐蝕行為影響之研究,碩士學位論文,中華技術學院土木防災工程研究所。[144] 戴群軒 (2012),混凝土內鋼筋腐蝕與氯離子濃度之研究,碩士論文,國立臺灣大學土木工程學研究所。