(34.204.201.220) 您好!臺灣時間:2021/04/19 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯文韜
研究生(外文):Wun-Tao Ke
論文名稱:水庫中三角洲演進堆積與排砂之研究
論文名稱(外文):Delta progradation, reservoir infill, and deposit removal in idealized and field reservoirs
指導教授:卡艾瑋
指導教授(外文):Hervé Capart
口試委員:吳富春黃千芬賴進松周憲德
口試日期:2016-07-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:317
中文關鍵詞:Exner equationdelta progradationself-similar solutionhydrosuctionsediment consolidation
外文關鍵詞:艾克納方程式三角洲演進過程自相似方程式解析解水力抽砂泥砂壓密
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要目標在研究理想水庫中三角洲的發展,水庫淤積過程,水力抽取排砂之方法。本研究以數學理論、數值計算、實驗模型與野外調查測量來闡明三角洲的發展。基於艾克納方程式,利用鏡像方程式安息角的特殊解,推導出可以應用於任意岸線形狀的三角洲前進方程式。這個方程式將應用於數值計算二維三角洲的演化過程,以帶有解析解的在水平底床上發展的逕向對稱三角洲做一個例子,來驗證數值模型的正確性,之後更進一步模擬一個點源供砂在堅硬傾斜底床與固定水位的三角洲發展。我們還進行了小尺度的實驗室三角洲模型試驗,與數值模型進行比較。此實驗為在一個堅硬的傾斜底床上,以點源供砂的方式,來研究三角洲在固定水位的水庫中發展的過程,並佐以雷射掃描的方法來測量三角洲的形狀體積與建立三維的數位高程模型,實驗三角洲上的沼澤區域周長與面積被用來與位於加拿大薩克其萬省莫西河的莫西三角洲比較,數位高程模型可用於分析通過岸線的輸砂量分布。我們選擇了霧社水庫來研究現地的水庫三角洲發展,並進行了四次縱剖面的測量,及收集了歷年的霧社水庫泥砂淤積資料。我們根據擴散方程式,推導出水庫淤積的自相似方程式的解析解,以有限體積法之數值計算來進行比較,並用以模擬現地水庫。為了延長水庫使用壽命,水力抽砂為一項可利用在不需將水庫儲水排光的情況下將泥砂排出水庫的方式。水力抽砂是將水庫底床泥砂以水砂混合的泥漿抽出,並將其輸送到水庫外。此方法的效率高度依賴著泥漿中的泥砂濃度,而泥沙濃度又決定於底床泥砂的壓密程度。為了探討泥砂壓密程度與水力抽砂的濃度關係,我們進行了一系列的小尺度實驗,並利用即時密度計來測量抽砂過程中的泥砂濃度的變化過程,最後利用非黏性選擇抽砂理論來比較實驗結果。最後,我們在地工離心機上進行實驗,期待開創新型的水力抽砂研究方法。

The aim of this thesis is to present the curved delta progradation, longitudinal reservoir infill, and hydrosuction removal deposits in idealized reservoir. The mathematical theory, numerical computation, laboratory experiments, and field observations are used to illustrate the delta progradation. Based on the Exner equation expoliting the special properties of solutions to the eikonal euation with the finite angle of repose, we derive a formula for delta front progradation rate applicable to arbitrary shoreline shape. Applying this delta front progradation rate formula, numerical computation results for two-dimensional delta are illustrated as the applications. In a case of the radially symmetrical delta prograding over a horizontal plane, an analytical solution is obtained and comfirms the numerical computation results. An exploring numerical case is to model the delta supplied by a point sediment source prograding over an inclined rigid basement into a basin with a constant standing water level. To compare with the numerical computation results, a small-scale laboratory experiment was conducted. The delta fed by a point sediment source upstrem develops over an inclined rigid basement entering a body of standing water with a constant level. The delta deposits are surveyed during experiments by video imaging of a scanned laser sheet. Through the imaging measurements of the entire delta deposits, a series of formation evolution and DTM are acquired. The characteristics of experimental delta including the perimeter and area of marsh and topset are used to compare to the field landscape of Mossy delta where is in the Mossy River, Saskatchewan, Canada. The DTM results are analyzed to obtain the sediment flux through the shoreline and distribution over foreset. Wushe Reservoir is selected for the field case study site of delta progradation. We surveyed the long-profile including the topset upstream and reservoir bathymetry for four times and collect the sedimentation measurements over past decades. We then derive a simplified theory from the Exner equation to obtain three analytical self-similar solutions for the longitudinal reservoir infill. The numerical computation of finite volume method is applied to compare with analytical self-similar solutions. The simplified numerical computation is used to simulate the field reservoir. To remove the sediment deposits in the reservoir and extend the life of the reservior, the hydrosuction sediment removal which is used to draw water and sediment into pipeline and convey the slurry out of reservoir is an option without empty the entire reservoir. The sediment concentration of the slurry depneds largely on the degree of the sediment consolidation of the bottom deposits. To investigate the influence by degree of sediment consolidation, a series of laboratory experiments were conducted using a small-scale suction pipe equiped with an online densimeter to measure the time evolution of the outflow sediment concentration. An inviscid selective withdrawal theory is applied to compare to the experiment results. Finally, the exploring experiment for hydroscution sediment removal on geotechnical centrifuge provides possiblies for future researches.

Abstract i
Abstract in Chinese v
Contents vii
List of figures xi
List of tables xxiii
1 Introduction 1
2 Theory and numerical computation for curved delta front progradation 11
2.1 Theory for the curvature dependence of delta front progradation 12
2.1.1 Problem formulation 12
2.1.2 Foreset geometry 15
2.1.3 Front progradation relation 17
2.1.4 Discussion 21
2.1.5 Sinuous delta front example 22
2.2 Numerical computation for two-dimensional delta progradation 26
2.2.1 Problem definition 26
2.2.2 Governing equation 26
2.2.3 Topset numerical solution 29
2.2.4 Shoreline evolution computation 37
2.3 An example of numerical computation for the radially symmetric delta prograding over a horizontal plane 39
2.4 The numerical computation for delta prograding over an inclined rigid basement 50
3 Experimental delta progradation in channel diffluence morphodynamics 65
3.1 Experimental set-up 66
3.2 Experimental observations 74
3.3 The growth of topset for experiment delta and Mossy delta 93
3.4 Laser scan topography 97
3.4.1 Laser scan geometry 97
3.4.2 Calibration target for projection center and screen matrix 98
3.4.3 Laser line topography 102
3.4.4 Digital terrain model (DTM) for delta 102
3.4.5 RGB-photo to DTM projection and refraction correction 110
3.5 Laser scan results for the experimental delta 115
3.6 The analysis of sediment ux distribution for experimental delta 121
4 Mathematical and _eld analysis of longitudinal reservoir infill 137
4.1 Study site and reservoir observation 138
4.1.1 Study site - Wushe Reservoir 138
4.1.2 Wushe Reservoir formation observation 140
4.2 Field survey and data collections 147
4.3 Mathematical theory of reservoir infill 154
4.3.1 Governing equation 154
4.3.2 Nondimensionalization 156
4.3.3 Three scenarios for reservoir infill 157
4.3.4 Self-similar solutions 160
4.3.5 Initial progradation 164
4.3.6 Initial deposition 169
4.3.7 Final infill 172
4.3.8 Numerical computation for reservoir infill 179
4.3.9 Results of the self-similar solutions and numerical computation 184
4.4 Comparison with experiments 193
4.5 Simulations to the reservoirs 207
4.5.1 Simulation to Wushe Reservoir, Taiwan 207
4.5.2 Simulations to Tsengwen Reservoir, Mudan Reservoir, Lago Dos Bocas, and Sakuma Dam 213
5 Inviscid model and hydrosuction experiment for sediment removal system in reservoir 225
5.1 Hydrosuction experiments 226
5.2 Sediment surface drawdown observations 233
5.3 Inviscid selective withdrawal model 239
5.4 Time evolution of the outflow sediment concentration 249
5.5 Discussion 258
5.6 Exploration work - hydrosuction experiment on geotechnical centrifuge 261
5.6.1 Experimental set-up 261
5.6.2 Results 264
6 Conclusions 301
6.1 Summary 301
6.2 Syntheses 305
Biblography 309


Axelsson, V. (1967), The Laitaure Delta: A Study of Deltaic Morphology and Processes, Geografiska Annaler. Series A, Physical Geography, 49(1), 1-127.
Borland, W.M., and Miller, C.R. (1958), Distribution of sediment in large reservoirs, J. Hydr. Div. Proc. ASCE, 84(HY 2), 1587-1-1587-18
Blum, H. (1967), A transformation for extracting new descriptors of shape, in Proc. Symp. Models for the Perception of Speech and Visual Form, edited by W.W. Dunn, pp.362, MIT Press, Combridge, Mass.
Bromley, J.C. (2007), The morphodynamics of sediment movement through a reservoir during dam removal, PhD thesis, Univ. of Nottignham.
Capart, H. (2013), Analytical solutions for gradual dam breaching and downstream river flooding, Water Resour. Res., 49, 1968-1987,
Capart, H., Bellal, M. and Young, D.L. (2007), Self-similar evolution of semi-infinite alluvial channels with moving boundaries, J. Sediment. Res., 77, 13-22.
Capart, H., Hsu, J.P.-C., Lai, S.Y.-J., and Hsieh, M.-L. (2010), Formation and decay of a tributary-dammed lake, Laonong River, Taiwan, Water Resour. Res., 46, W11522.
Crank, J. (1984), Free and Moving Boundary Problems, Oxford University Press, Oxford.
Craya, A. (1949), Recherches théoriques sur 1''écoulement de couches superposées de fluides de densités différentes, La Houille Blanche, 4(1), 44-55.
Edmonds, D.A., and Slingerland, R.L., (2007), Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks, J. Geophys. Res., 112, F02034.
Edmonds, D.A., Paola C., Hoyal, D.C.J.D., and Sheets, B.A. (2011), Quantitative metrics that describe river deltas and their channel networks, J. Geophys. Res., 116, F04022.
Elliott, C. M., and Ockendon, J.R., (1982), Weak and Variational Methods for Moving Boundary Problems, Res. Notes Math, vol. 59, Pitman, London.
Fan, J. (2008), Stratified flow through outlets, J. Hydro-Environment Res., 2(1), 3-18.
Fan, J., and Morris, G. (1992 a), Reservoir sedimentation. I: delta and density-current deposits, ASCE J. Hydr. Engrg., 118(3), 354-369.
Fan, J., and Morris, G. (1992 b), Reservoir sedimentation. II: reservoir desiltation and long-term storage capacity, ASCE J. Hydr. Engrg., 118(3), 370-384.
Fratantonio, M., and Rencis, J.J. (2000), Exact boundary element integrations for two-dimensional Laplace equation, Eng. Anal. Bound. Elem., 24, 325-342
Gaudin, C., Bienen, B., and Cassidy, M.J. (2011) Investigation of the potential of bottom water jetting to ease spudcan extraction in soft clay, Géotechnique, 61(12), 1043-1054.
Global Aqua Survey Ltd. (2009), Report on the siltation survey of Wushe Reservoir in 2009, Taiwan Power Company, 61 pp.
Gilbert, G. K. (1885), The topographic features of lake shores. Ann. Rep. U. S. Geol. Surv., 5, 69-123.
Holmes, A., (1960), Principle of Physical Geology, Thomas Nelson and Sons Ltd, London.
Hotchkiss, R.H., and Huang, X. (1995), Hydrosuction sediment-removal systems (HSRS): principles and field test, ASCE J. Hydr. Engrg., 121(6), 479-489.
Hoyal, D.C.J.D., and Sheets, B.A., (2009), Morphodynamic evolution of experimental cohesive deltas, J. Geophys. Res., 114, F02009.
Hsu, J. P. C., and H. Capart (2008), Onset and growth of tributary-dammed lakes, Water Resour. Res., 44(11), W11201.
Ivey, G.N., and Blake, S. (1985), Axisymmetric withdrawal and inflow in a density-stratified contained, J. Fluid Mech., 161, 115-137.
Jenzer Althaus, J.M.I., De Cesare, G., and Schleiss, A.J. (2014), Sediment evacuation from reservoirs through intakes by jet-induced flow, ASCE J. Hydr. Engrg., 10.1061/(ASCE)HY.1943-7900.0000970, 04014078.
Jerolmack, D.J., and Swenson, J.B., (2007), Scaling relationships and evolution of distributary networks on wave-influenced deltas, Geophys. Res. Lett., 34, L23402.
Kevorkian, J. (1990), Partial Differential Equations: Analytical Solution Techniques, Brooks/Cole, London.
Ke, W.-T., Formation of symmetrically palmated deltas: shallow flow computations and experimental study, Natioanl Taiwan University, Taipei, Master thesis.
Ke, W.-T., and Capart, H. (2015), Theory for curvature dependence of delta front progradation, Geophys. Res. Lett., 42.
Ke, W.-T., Chen, Y.-W., Hsu, H.-C. Toigo, K., Wong, W.-C., and Capart, H. (2016), Influence of sediment consolidation on hydrosuction performance, J. Hydraul. Eng.-ASCE, 10.1061/(ASCE)HY.1943-7900.0001143 , 04016037.
Kim, W., C. Paola, Swenson, J.B. and Voller, V.R. (2006), Shoreline response to autogenic processes of sediment storage and release in the fluvial system, J. Geophys Res., 111, F04013.
Kim, W. and Muto, T. (2007), Autogenic response of alluvial-bedrock transition to base-level variation: Experiment and theory, J. Geophys Res., 112, F03S14.
Kim, W., A. Dai, T. Muto, and G. Parker (2009), Delta progradation driven by an advancing sediment source: Coupled theory and experiment describing the evolution of elongated deltas, Water Resour. Res., 45, W06428.
Kythe, P.K. (1995), An introduction to boundary element methods, Boca Raton, CRC Press.
Lai, S. Y. J., and H. Capart (2009), Reservoir infill by hyperpycnal deltas over bedrock, Geophys. Res. Lett., 36, L08402.
Lee, D. T. (1982), Medial axis transformation of a planar shape, IEEE Trans. Pattern Anal. Machine Intell., PAMI-4, 363-369.
Leva López, J., W. Kim, and R. J. Steel (2014), Autoacceleration of clinoform progradation in foreland basins: theory and experiments, Basin Res., 26, 489-504.
Liggett, J.A. and Liu, P.L.F. (1983), The boundary integral equation method for porous media flow, London, Boston, Allen & Unwin.
Lorenzo-Trueba, J., Voller, V.R., Muto, T., Kim, W., Paola, C., and Swenson, J.B. (2009) ,A similarity solution for a dual moving boundary problem associated with a coastal-plain depositional system, J. Fluid Mech., vol. 628, pp. 427-443.
Machin, J.B., and Allan, P.A. (2011), State-of-the-art jet trenching in stiff clays, Frontiers in Offshore Geotechnics II, pp. 871-876.
Miedema, S. A. (1999), Considerations on limits of dradging processes, 19th Annual Meeting and Technical Conf. of the Wester Dredging Association}, Louisville, KY, 21.
Nadai, A. (1950), Theory of flow and fracture of solids, McGraw-Hill, New York.
Nemec, W. (1990), Deltas-remarks on terminology and classification in Coarse-grained deltas, Spec. Publs int. Ass. Sediment, vol. 10, edited by A. Colella and D. B. Prior, pp.3-12. Blackwell Ltd, Oxford, U. K.
Ni, W.-J., and H. Capart (2006), Groundwater drainage and recharge by networks of irregular channels, J. Geophys. Res., 111, F02014.
Osher, S., and J. A. Sethian (1988), Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput.Phys., 79, 12-49.
Paola, C., Quantitative models of sedimentary basin filling, Sedimentology, 47(1), 121-178.
Paola, C., and V. R. Voller (2005), A generalized Exner equation for sediment mass balance, J. Geophys. Res., 110, F04014.
Parker, G., T. Muto, Y. Akamatsu, W. E. Dietrich, and J. W. Lauer (2008), Unravelling the conundrum of river response to rising sea-level from laboratory to field. Part I: Laboratory experiments, Sedimentology, 55, 1643-1655.
Pauli, N. S., and G. Gioia (2007), The topography of steady sandpiles on arbitrary domains, Proc. R. Soc. A., 463, 1247-1258.
Real World Engineering Consultants Inc. (2015), Mudan Reservoir sedimentation measurements in 2014, Report submitted to South Region Water Resources Office, Water Resources Agency, Ministry of Economic Affairs, 176 pp.
Schleiss, A., De Cesare, G., and Jenzer Althaus, J. M. I. (2010), Reservoir sedimentation threatens the sustainable use of hydropower, Wasser,Energie, Luft-Eau, énergie, air, 102(1), 31-40.
Sethian, J. A. (1985), Curvature and the evolution of fronts, Commun. Math. Phys., 101, 487-499.
Seybold, H., J. S. Andrade Jr., and H. J. Herrmann (2007), Modeling river delta formation, Proc. Natl. Acad. Sci. U.S.A., 104, 16,804-16,809.
Sinotech Engineering Consultants (2013), Sediment Releasing Planning in Tseng-Wen Reservoir Desilting Alternatives Research, Report submitted to Water Resources Planning Institute, December 2013, 450 pp.
Smith, N.D., Slingerland, R.L., Perez-Arlucea, M., and Morozova, G.S.(1998), The 1870s avulsion of the Saskatchewan River, Can. J. Earth Sci., 35, 453-466.
Soler-López, L.R. (2007), Sedimentation history of Lago Dos Bocas, Puerto Rico, 1942-2005: U.S. Geological Survey Scientific Investigations Report 2007-5053, 36 p., 1 pl.
Spigel, R.H., and Farrant, B. (1984), Selective withdrawal through a point sink and pycnocline formation in a linearly stratified flow, J. Hydr. Res., 22(1), 35-51.
Strong Engineering Consulting Co., Ltd. (2012), 2012''s Tsengwen reservoir sedimentation measurements. Report submitted to South Region Water Resources Office, Water Resources Agency, Ministry of Economic Affairs, 110 pp.
Swenson, J.B., Voller, V.R., Paola, C., Garker, G., and Marr, J.G. (2000), Fluvio-deltaic sedimentation: A generalized Stefan problem, Euro. J. Appl. Math., 11, 433-452.
Ullah, S.M., Mazurek, K.A., Rajaratnam, N., and Reitsma, S. (2005), Siphon removal of cohesionless materials, J. Waterway, Port, Coastal Ocean Eng., 131(3),115-122.
Voller, V. R. (2010), A model of sedimentary delta growth: A novel application of numerical heat transfer methods, Int. J. Numer. Meth. Heat Fluid Flow, 20(5), 570-586.
Voller, V. R., Swenson, J.B., and Paola, C., (2004), An analytical solution for a Stefan problem with variable latent heat, Int. J. Heat Mass Transfer, 47, 5387-5390.
Voller, V. R., Swenson, J.B., Kim, W., and Paola, C., (2006), An enthalpy method for moving boundary problems on the earth''s surface, Int. J. Numer. Methods for Heat & Fluid Flow, 16(5), 641-654.
Voller, V. R. (2010), A model of sedimentary delta growth: a novel application of numerical heat transfer methods, Int. J. Numer. Meth. Heat Fluid Flow, 20(5), 570-586.
Wolinsky, M.A., Edmonds, D.A., Martin, J., and Paola, C. (2010), Delta allometry: Growthlaws for river deltas, Geophys. Res. Lett., 37, L21403.
Winterwerp, J.C., van Kesteren, W.G.M., van Prooijen, B., and Jacobs, W. (2012) A conceptual framework for shear flow-induced erosion of soft cohesive sediment beds, J. Geophys. Res., 117, C10020.
Wood, I.R. (2001), Extensions to the theory of selective withdrawal, J. Fluid Mech., 448, 315-333.
Yu, W.S., Hsu, S.M., Fan, K.L., (2004), Experiments on selective withdrawal of a codirectional two-layer flow through a line sink, ASCE J. of Hydr. Engrg., 130(12),1156-1166.
詮華國土測繪有限公司(2014),103年度牡丹水庫淤積測量,經濟部水利署南區水資源局。
全球測繪科技股份有限公司(2009),98年度霧社水庫淤積測量工作,台灣電力股份有限公司萬大發電廠。
自強工程顧問有限公司(2012),101年度曾文水庫淤積測量工作測量成果報告書,經濟部水利署南區水資源局。
中興工程顧問股份有限公司(2013),曾文水庫排砂規劃,經濟部水利署水利規劃試驗所。
角 哲也(2007),貯水池土砂管理最前線,京土会電子会報 45。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔