跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王珩
研究生(外文):Hing Ong
論文名稱:積雲參數化中對流質量通量之人為就地補償之效應
論文名稱(外文):Effects of Artificial Local Compensation of Convective Mass Flux in Cumulus Parameterization
指導教授:郭鴻基郭鴻基引用關係吳健銘
指導教授(外文):Hung-Chi KuoChien-Ming Wu
口試委員:王懌琪
口試委員(外文):Yi-Chi Wang
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:45
中文關鍵詞:非靜力平衡且完全可壓縮模式質量補償積雲參數化熱帶氣旋模擬
外文關鍵詞:Nonhydrostatic fully compressible modelMass compensationCumulus parameterizationTropical Cyclone Simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在對積雲參數化中的對流質量通量,比較人為就地補償與模式動力補償的異同。本研究使用天氣研究與預報模式(the Weather Research and Forecasting Model, WRF)對以下兩個方面比較,一為對水平解析度的依賴性,二為在熱帶氣旋模擬中的效應。使用模式動力補償的積雲參數化方案稱為混成質量通量積雲參數化方案(hybrid mass flux cumulus schemes, HYMACSs),它們將次網格質量通量輻合或輻散視同參數化質量源或匯來處理。只要在非靜力平衡且完全可壓縮模式中加入這些質量源或匯,模式動力就能解析質量補償運動。質量補償實驗的結果證實,對3公里到27公里的水平解析度來說,就地補償比動力補償更敏感。『背著跑』實驗的結果證明,在9公里解析度使用Kain-Fritsch方案(KF)模擬熱帶氣旋,就地補償導致暖化與低層乾化並可使海平面氣壓深化與降水強化。『各自跑』實驗的結果暗示混成質量通量KF可以減少在9公里解析度使用KF模擬高估熱帶氣旋強度的傾向,不過此結果有氣旋尺度與積雲尺度過程之非線性交互作用所造成的不確定性。我們得出此結論:在非靜力平衡且完全可壓縮模式中創制積雲參數化時,動力補償比就地補償更符合自然。另外討論消除就地補償對整合性積雲參數化的重要性。
• 在非靜力平衡且完全可壓縮模式中創制積雲參數化時,動力補償比就地補償更符合自然。
• 對水平解析度來說,就地補償比動力補償更敏感。
• 就地補償導致暖化與低層乾化並可使海平面氣壓深化與降水強化。


In this study, cumulus parameterization schemes with artificial local compensation of convective mass flux are compared with hybrid mass flux cumulus schemes (HYMACSs), implementing dynamic compensation of that, with the Weather Research and Forecasting Model (WRF) in terms of the dependence on the horizontal resolution and the effects in tropical cyclone simulations. HYMACSs treat subgrid-scale mass flux convergence or divergence as subgrid-scale mass sources or sinks. When the mass sources or sinks are introduced to the mass continuity equation in a nonhydrostatic fully compressible model, the model dynamics would resolve the mass-compensating motion. The results of the mass compensation experiment corroborate that the local compensation is more sensitive than the dynamic compensation to the horizontal resolution between 3 and 27 km. The results of the piggyback experiment substantiate that the local compensation in the Kain-Fritsch scheme (KF) causes warming and low-level drying and could lead to sea level pressure deepening and precipitation strengthening at 9 km resolution in tropical cyclone simulations. With uncertainty due to the nonlinear interaction between cyclone-scale and cumulus-scale processes, the results of the fully coupled experiment imply that the hybrid mass flux KF (HY) could reduce the tendency of KF to overestimate the intensity of simulated tropical cyclones at 9 km resolution. We conclude that the dynamic compensation is more realistic than the local compensation when formulating cumulus schemes in nonhydrostatic fully compressible models. In addition, the importance of the elimination of the local compensation for the unified cumulus parameterization problem is discussed.
• The dynamic compensation is more realistic than the local compensation when formulating cumulus schemes in nonhydrostatic fully compressible models
• The local compensation is more sensitive than the dynamic compensation to the horizontal resolution
• The local compensation causes warming and low-level drying and could lead to sea level pressure deepening and precipitation strengthening


謝辭 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vi
表目錄 ix
1. Introduction 1
2. Scheme Formulation 6
2.1. An Ensemble Average Continuity Equation Set 6
2.2 A General Formulation of HYMACSs 7
2.3 The Particular Closure of HY and KF 10
3. Experiment Design 14
3.1 The Mass Compensation Experiment 14
3.2 The Piggyback Experiment 15
3.3 The Fully Coupled Experiment 17
4 Experiment Results 21
4.1 The Mass Compensation Experiment 21
4.2 The Piggyback Experiment 22
4.3 The Fully Coupled Experiment 26
5. Conclusions 38
References 41



Arakawa, A., and W. H. Schubert (1974), Interaction of a cumulus cloud ensemble with the large-scale environment, Part I, Journal of the Atmospheric Sciences, 31(3), 674-701, doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.
Arakawa, A., and C.-M. Wu (2013), A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I, Journal of the Atmospheric Sciences, 70(7), 1977-1992, doi: 10.1175/JAS-D-12-0330.1.
Arakawa, A., J.-H. Jung, and C.-M. Wu (2011), Toward unification of the multiscale modeling of the atmosphere, Atmospheric Chemistry and Physics, 11(8), 3731-3742, doi: 10.5194/acp-11-3731-2011.
Beljaars, A. (1995), The parametrization of surface fluxes in large‐scale models under free convection, Quarterly Journal of the Royal Meteorological Society, 121(522), 255-270, doi: 10.1002/qj.49712152203.
Chandrasekar, R., and C. Balaji (2012), Sensitivity of tropical cyclone Jal simulations to physics parameterizations, Journal of earth system science, 121(4), 923-946, doi: 10.1007/s12040-012-0212-8.
Dyer, A., and B. Hicks (1970), Flux‐gradient relationships in the constant flux layer, Quarterly Journal of the Royal Meteorological Society, 96(410), 715-721, doi: 10.1002/qj.49709641012.
Emanuel, K. A. (1991), A scheme for representing cumulus convection in large-scale models, Journal of the Atmospheric Sciences, 48(21), 2313-2329, doi: 10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.
Gregory, D., and P. Rowntree (1990), A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure, Monthly Weather Review, 118(7), 1483-1506, doi: 10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.
Grell, G. A., and S. R. Freitas (2014), A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmospheric Chemistry and Physics, 14(10), 5233-5250, doi: 10.5194/acpd-13-23845-2013.
Haghroosta, T., W. Ismail, P. Ghafarian, and S. Barekati (2014), The efficiency of the WRF model for simulating typhoons, Natural Hazards and Earth System Sciences Discussions, 2, 287-313, doi: 10.5194/nhessd-2-287-2014.
Hong, S.-Y., Y. Noh, and J. Dudhia (2006), A new vertical diffusion package with an explicit treatment of entrainment processes, Monthly Weather Review, 134(9), 2318-2341, doi: 10.1175/MWR3199.1.
Kain, J. S. (2004), The Kain-Fritsch convective parameterization: an update, Journal of Applied Meteorology, 43(1), 170-181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kain, J. S., and J. M. Fritsch (1990), A one-dimensional entraining/detraining plume model and its application in convective parameterization, Journal of the Atmospheric Sciences, 47(23), 2784-2802, doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
Kain, J. S., and J. M. Fritsch (1993), Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in The representation of cumulus convection in numerical models, edited, pp. 165-170, Springer.
Kessler, E. (1995), On the continuity and distribution of water substance in atmospheric circulations, Atmospheric research, 38(1), 109-145, doi: 10.1016/0169-8095(94)00090-Z.
Kuell, V., and A. Bott (2008), A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models, Meteorologische Zeitschrift, 17(6), 775-783, doi: 10.1127/0941-2948/2008/0342.
Kuell, V., A. Gassmann, and A. Bott (2007), Towards a new hybrid cumulus parametrization scheme for use in non‐hydrostatic weather prediction models, Quarterly Journal of the Royal Meteorological Society, 133(623), 479-490, doi: 10.1002/qj.28.
Molinari, J., and M. Dudek (1992), Parameterization of convective precipitation in mesoscale numerical models: A critical review, Monthly Weather Review, 120(2), 326-344, doi: 10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2.
Park, S. (2014), A unified convection scheme (UNICON). Part I: Formulation, Journal of the Atmospheric Sciences, 71(11), 3902-3930, doi: 10.1175/JAS-D-13-0233.1.
Paulson, C. A. (1970), The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, Journal of Applied Meteorology, 9(6), 857-861, doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.
Rotunno, R., and K. A. Emanuel (1987), An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model, Journal of the Atmospheric Sciences, 44(3), 542-561, doi: 10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.
Sing, K. S., and M. Mandal (2014), Sensitivity of Mesoscale Simulation of Aila Cyclone to the Parameterization of Physical Processes Using WRF Model, in Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change, edited, pp. 300-308, Springer.
Skamarock, W., J. Klemp, J. Dudhia, D. Gill, D. Barker, M. Duda, X. Huang, W. Wang, and J. Powers (2008), A description of the Advanced Research WRF Version 3, NCAR technical note, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA.
Srinivas, C., R. Venkatesan, D. B. Rao, and D. H. Prasad (2007), Numerical simulation of Andhra severe cyclone (2003): Model sensitivity to the boundary layer and convection parameterization, in Atmospheric and Oceanic, edited, pp. 1465-1487, Springer.
Sun, Y., L. Yi, Z. Zhong, Y. Hu, and Y. Ha (2013), Dependence of model convergence on horizontal resolution and convective parameterization in simulations of a tropical cyclone at gray‐zone resolutions, Journal of Geophysical Research: Atmospheres, 118(14), 7715-7732, doi: 10.1002/jgrd.50606.
Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Monthly Weather Review, 117(8), 1779-1800, doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.
Webb, E. K. (1970), Profile relationships: The log‐linear range, and extension to strong stability, Quarterly Journal of the Royal Meteorological Society, 96(407), 67-90, doi: 10.1002/qj.49709640708.
Wu, C.-M., and A. Arakawa (2014), A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II, Journal of the Atmospheric Sciences, 71(6), 2089-2103, doi: 10.1175/JAS-D-13-0382.1.
Zhang, D., and R. A. Anthes (1982), A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data, Journal of Applied Meteorology, 21(11), 1594-1609, doi: 10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.
Zhang, G. J., and N. A. McFarlane (1995), Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model, Atmosphere-ocean, 33(3), 407-446, doi: 10.1080/07055900.1995.9649539.
Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi (2015), Improving High-Resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with an Updated Kain-Fritsch Scheme, Monthly Weather Review(2015), doi: 10.1175/MWR-D-15-0005.1.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top