跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪健州
研究生(外文):Jian-Zhou Wang
論文名稱:細胞內聚核醣體引起轉譯框架位移之研究
論文名稱(外文):Study of Polyribosome-induced Frameshifting in vivo
指導教授:温進德
指導教授(外文):Jin-Der Wen
口試委員:朱家瑩王致恬
口試委員(外文):Chia-Ying ChuChih-Tien Wang
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:69
中文關鍵詞:核醣體框架位移轉譯聚核醣體dnaX
外文關鍵詞:ribosomeframeshiftingtranslationpolyribosomednaX
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
核醣體是生物製造蛋白質的工廠。一條mRNA上通常有多個核醣體同時進行轉譯,稱作聚核醣體。核醣體在轉譯過程中遇到特殊的mRNA序列時會發生框架位移,從一段mRNA序列轉譯出不同的蛋白質產物。大腸桿菌的dnaX基因框架位移位點由滑動序列、上游的內部SD序列和下游的髮夾結構三個部分組成。當核醣體轉譯到滑動序列時,受到下游髮夾結構的阻礙和上游SD序列的拉扯,有機會往上游方向滑動,從0轉譯框架進入-1轉譯框架。兩個轉譯框架分別做出DNA聚合酶III的γ和τ次單元。
本文在大腸桿菌內研究聚核醣體現象對轉譯框架位移的影響。我們用dnaX轉譯框架位移位點作為材料,通過西方墨點法定量兩個轉譯框架的蛋白質,進而計算出框架位移比例。我們發現核醣體在遇到SD序列和二級結構時轉譯速度減慢,可能會被上游的核醣體追上。此時,下游核醣體代替原本框架位移位點的髮夾結構,促使上游核醣體發生-1框架位移。如果去掉下游的SD序列或二級結構,使核醣體不再聚集,框架位移比例都會下降。另外,內部SD序列還可以抓住游離的30S次單元,同樣能夠阻礙上游核醣體引起轉移框架位移。通過這些研究,我們成功觀測到聚核醣體中相鄰核醣體會互相影響,並且對轉譯結果產生顯著的影響。

The ribosome is a ubiquitous protein manufactory for all living creatures. There are usually copious ribosomes, also called polyribosome, co-translating on one mRNA. The ribosome has a chance to shift its reading frame while encountering a special mRNA sequence, like the frameshifting site of dnaX gene in Escherichia coli, and thus translates the downstream mRNA sequence to another different protein product. The dnaX frameshifting site consists of a slippery sequence, an upstream internal Shine-Dalgarno sequence and a downstream hairpin. Because of being obstructed by hairpin and drawn by the SD sequence, the ribosome may shift one base towards upstream on the slippery sequence from the 0 frame to -1 frame. As a consequence, different codons on two frames are respectively translated into γ and τ subunits of DNA polymerase III.
In this thesis, we investigate how polyribosome affects translation frameshifting in E. coli in vivo. We use the dnaX frameshifting site as a model, quantify protein products from two frames by Western blot, and calculate frameshifting efficiency. We find that a ribosome can be temporarily stalled by a strong SD sequence or secondary structure and then caught up by following ribosomes. At this time, the stalled ribosome may mimic the role of the hairpin and promote the following ribosome to shift to the -1 frame on the slippery sequence. When we mutate the downstream SD sequence or secondary structure, ribosomes are unable to accumulate, resulting in a reduction of frameshifting efficiency. Moreover, not only an elongating ribosome but also a free 30S ribosomal subunit can trigger upstream ribosomes frameshifting by binding to the internal SD sequence. Through our research, we have successfully observed the interaction between ribosomes, which may remarkably affect translation outcome.

口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 ix
英文縮寫檢索表 x
第一章 前言 1
1.1 蛋白質 1
1.2 核醣體與轉譯 1
1.3 轉運RNA 2
1.4 原核生物轉譯過程 2
1.5 聚核醣體 4
1.6 擺動配對 4
1.7 框架位移 5
1.8 聚核醣體抑制mRNA二級結構的形成 5
1.9 不同框架終止密碼子引起不同框架位移比例 6
1.10 研究目的和動機 7
第二章 材料和方法 9
2.1 載體 9
2.2 菌株 9
2.3 酵素 9
2.4 抗體 9
2.5 試劑 9
2.6 藥品 10
2.7 主要耗材 10
2.8 主要儀器 11
2.9 聚丙烯醯胺凝膠 11
2.10 緩衝液 11
2.11 勝任細胞製備 12
2.12 質體構建 12
2.13 蛋白質表達 12
2.14 細胞外實驗 13
2.15 西方墨點法 13
2.16 蛋白質定量和分析 14
第三章 結果 15
3.1 模仿p1FS和p1FI的距離設計實驗 (pFsΔhp-47/48/50-St) 15
3.2 滑動序列到終止密碼子的距離減半 (pFsΔhp-17/20/23-St) 16
3.3 微調滑動序列到-1終止密碼子的距離 (pmonoFSI, pmonoFSI-9) 17
3.4 改用0框架終止密碼子暫停核醣體 (pFsΔhp-18-St) 18
3.5 減少mRNA的數量以增加核醣體的密度 (pFsΔhp-47/48/23-St) 19
3.6 減少RF1的濃度來促進核醣體聚集 (pFsΔhp-48-St) 20
3.7 終止密碼子下游再加入髮夾結構 (pFsΔhp-48-St-Hp/eHp) 20
3.8 加入髮夾結構並且讓距離減半 (pFsΔhp-18/21/24-St-Hp) 21
3.9 用SD序列和髮夾結構促進核醣體相碰 (pFsΔhp-4/5/6/7-Sd-Hp) 22
3.10 驗證框架位移和下游SD序列的關聯性 (pFsΔhp-5-msd-Hp) 23
3.11 驗證框架位移和下游髮夾結構的關聯性 (pFsΔhp-47-St) 23
3.12 驗證框架位移和聚核醣體的關聯性 (pRt-FsΔhp-5-Sd/msd-Hp) 23
第四章 討論 26
4.1 終止密碼子對轉譯的影響 26
4.2 髮夾結構對轉譯和框架位移的影響 26
4.3 內部SD序列對轉譯和框架位移的影響 28
4.4 影響核醣體聚集的其他因素 28
4.5 聚核醣體現象對轉譯起始的影響 29
4.6 核醣體聚集導致的不均勻分佈以及產生的影響 30
4.7 聚核醣體情況下每個核醣體覆蓋的mRNA長度 31
4.8 實驗方法改進 32
4.9 後續研究 32
參考文獻 36
圖1. 核醣體 40
圖2. 轉譯過程(Moore 2012) 41
圖3. 聚核醣體(Slayter, Warner et al. 1963) 42
圖4. 鹼基配對 43
圖5. 框架位移 44
圖6. 原始載體pGS-21a 45
圖7. 質體ptriFS 46
圖8. 質體p1FS與p1FI 47
圖9. 模仿p1FS與p1FI並去掉髮夾結構(pFsΔhp-47/48/50-St) 48
圖10. 滑動序列與終止密碼子之間的距離減半(pFsΔhp-17/20/23-St) 49
圖11. 微調滑動序列到終止密碼子的距離(pmonoFSI, pmonoFSI-9) 50
圖12. 改用0框架終止密碼子暫停核醣體(pFsΔhp-18-St) 51
圖13. 減少mRNA數量進行in vitro實驗(pFsΔhp-47/48/23-St) 52
圖14. 減少RF1的濃度進行in vitro實驗(pFsΔhp-48-St) 53
圖15. 加入髮夾結構幫助終止密碼子暫停核醣體(pFsΔhp-48-St-Hp/eHp) 54
圖16. 加入髮夾結構並且連接片段距離減半(pFsΔhp-18/21/24-St-Hp) 55
圖17. 用下游SD序列和髮夾結構聚集核醣體(pFsΔhp-4/5/6/7-Sd-Hp) 56
圖18. 改變下游SD序列(pFsΔhp-5-msd-Hp) 57
圖19. 同時去掉下游SD序列與髮夾結構(pFsΔhp-47-St) 58
圖20. 加入聯讀序列(pRt-FsΔhp-5-Sd-Hp) 59
圖21. 下游SD序列抓住游離30S次單元示意圖 60
圖22. 改變下游SD序列同時加入聯讀序列(pRt-FsΔhp-5-msd-Hp) 61
圖23. 主要實驗結果數據對比 62
表1. 各質體插入片段DNA序列 63
表2. 各質體蛋白質產物大小計算值 67
表3. 滑動序列下游不同距離加入SD序列的實驗數據分析 68
表4. 衍伸自pFsΔhp-5-Sd-Hp的相關實驗數據分析 69

Aitken, C. E., A. Petrov and J. D. Puglisi (2010). "Single ribosome dynamics and the mechanism of translation." Annual Review of Biophysics 39: 491-513.
Auweter, S. D., F. C. Oberstrass and F. H. Allain (2006). "Sequence-specific binding of single-stranded RNA: is there a code for recognition?" Nucleic Acids Research 34(17): 4943-4959.
Ban, N., P. Nissen, J. Hansen, M. Capel, P. B. Moore and T. A. Steitz (1999). "Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit." Nature 400(6747): 841-847.
Birnie, G. D., D. Rickwood and A. Hell (1973). "Buoyant densities and hydration of nucleic acids, proteins and nucleoprotein complexes in metrizamide." Biochimica et Biophysica Acta 331(2): 283-294.
Blattner, F. R., G. Plunkett, 3rd, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau and Y. Shao (1997). "The complete genome sequence of Escherichia coli K-12." Science 277(5331): 1453-1462.
Brandt, F., S. A. Etchells, J. O. Ortiz, A. H. Elcock, F. U. Hartl and W. Baumeister (2009). "The native 3D organization of bacterial polysomes." Cell 136(2): 261-271.
Chaney, J. L. and P. L. Clark (2015). "Roles for synonymous codon usage in protein biogenesis." Annual Review of Biophysics 44: 143-166.
Chen, J., A. Petrov, M. Johansson, A. Tsai, S. E. O''Leary and J. D. Puglisi (2014). "Dynamic pathways of -1 translational frameshifting." Nature 512(7514): 328-332.
Chevance, F. F. V., S. Le Guyon and K. T. Hughes (2014). "The effects of codon context on in vivo translation speed." PLoS Genetics 10(6).
Chung, T.-P. (2011). The study of in vivo -1 ribosomal frameshifting efficiency Master Thesis, National Taiwan University.
Dunkle, J. A. and J. H. Cate (2010). "Ribosome structure and dynamics during translocation and termination." Annual Review of Biophysics 39: 227-244.
Engelbergkulka, H. (1981). "Uga suppression by normal transfer rnatrp in Escherichia coli codon context effects." Nucleic Acids Research 9(4): 983-991.
Farabaugh, P. J. (1996). "Programmed translational frameshifting." Annual Review of Genetics 30: 507-528.
Gendron, K., J. Charbonneau, D. Dulude, N. Heveker, G. Ferbeyre and L. Brakier-Gingras (2008). "The presence of the TAR RNA structure alters the programmed-1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation." Nucleic Acids Research 36(1): 30-40.
Gesteland, R. F. and J. F. Atkins (1996). "Recoding: Dynamic reprogramming of translation." Annual Review of Biochemistry 65: 741-768.
Green, R. and H. F. Noller (1997). "Ribosomes and translation." Annual Review of Biochemistry 66: 679-716.
Gumbart, J., E. Schreiner, D. N. Wilson, R. Beckmann and K. Schulten (2012). "Mechanisms of SecM-mediated stalling in the ribosome." Biophysical Journal 103(2): 331-341.
Ingolia, N. T., S. Ghaemmaghami, J. R. S. Newman and J. S. Weissman (2009). "Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling." Science 324(5924): 218-223.
Larsen, B., R. F. Gesteland and J. F. Atkins (1997). "Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%." Journal of Molecular Biology 271(1): 47-60.
Laursen, B. S., H. P. Sorensen, K. K. Mortensen and H. U. Sperling-Petersen (2005). "Initiation of protein synthesis in bacteria." Microbiology and Molecular Biology Reviews 69(1): 101-123.
Leung, E. K., N. Suslov, N. Tuttle, R. Sengupta and J. A. Piccirilli (2011). "The mechanism of peptidyl transfer catalysis by the ribosome." Annual Review of Biochemistry 80: 527-555.
Li, G. W., D. Burkhardt, C. Gross and J. S. Weissman (2014). "Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources." Cell 157(3): 624-635.
Li, G. W., E. Oh and J. S. Weissman (2012). "The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria." Nature 484(7395): 538-541.
Lovett, P. S. and E. J. Rogers (1996). "Ribosome regulation by the nascent peptide." Microbiological Reviews 60(2): 366-385.
Maitra, U., E. A. Stringer and A. Chaudhuri (1982). "Initiation factors in protein biosynthesis." Annual Review of Biochemistry 51: 869-900.
Mao, Y. H., H. L. Liu, Y. L. Liu and S. H. Tao (2014). "Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae." Nucleic Acids Research 42(8): 4813-4822.
Mohammad, F., C. J. Woolstenhulme, R. Green and A. R. Buskirk (2016). "Clarifying the translational pausing landscape in bacteria by ribosome profiling." Cell Reports 14(4): 686-694.
Moore, P. B. (2012). "How should we think about the ribosome." Annual Review of Biophysics 41: 1-19.
Ogle, J. M., D. E. Brodersen, W. M. Clemons, Jr., M. J. Tarry, A. P. Carter and V. Ramakrishnan (2001). "Recognition of cognate transfer RNA by the 30S ribosomal subunit." Science 292(5518): 897-902.
Pavlov, M. Y., D. V. Freistroffer, J. MacDougall, R. H. Buckingham and M. Ehrenberg (1997). "Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3." EMBO Journal 16(13): 4134-4141.
Pelechano, V., W. Wei and L. M. Steinmetz (2015). "Widespread co-translational rna decay reveals ribosome dynamics." Cell 161(6): 1400-1412.
Ramakrishnan, V. (2002). "Ribosome structure and the mechanism of translation." Cell 108(4): 557-572.
Ryoji, M., K. Hsia and A. Kaji (1983). "Read-through translation." Trends in Biochemical Sciences 8(3): 88-90.
Schluenzen, F., A. Tocilj, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, F. Franceschi and A. Yonath (2000). "Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution." Cell 102(5): 615-623.
Shoemaker, C. J. and R. Green (2012). "Translation drives mRNA quality control." Nature Structural & Molecular Biology 19(6): 594-601.
Slayter, H. S., J. R. Warner, A. Rich and C. E. Hall (1963). "The visualization of polyribosomal structure." Journal of Molecular Biology 7: 652-657.
Tsuchihashi, Z. (1991). "Translational frameshifting in the Escherichia coli dnaX gene in vitro." Nucleic Acids Research 19(9): 2457-2462.
Tsuchihashi, Z. and P. O. Brown (1992). "Sequence requirements for efficient translational frameshifting in the Escherichia coli dnax gene and the role of an unstable interaction between transfer RNA(lys) and an AAG lysine codon." Genes & Development 6(3): 511-519.
Varani, G. and W. H. McClain (2000). "The G U wobble base pair - A fundamental building block of RNA structure crucial to RNA function in diverse biological systems." EMBO Reports 1(1): 18-23.
Warner, J. R., P. M. Knopf and A. Rich (1963). "A multiple ribosomal structure in protein synthesis." Proceedings of the National Academy of Sciences of the United States of America 49: 122-129.
Wei, J., C. Wu and M. S. Sachs (2012). "The arginine attenuator peptide interferes with the ribosome peptidyl transferase center." Molecular Cell Biology 32(13): 2396-2406.
Weiner, A. M. and K. Weber (1973). "Single UGA codon functions as a natural termination signal in coliphage q-beta coat protein cistron." Journal of Molecular Biology 80(4): 837-855.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊