|
Adames, N.R., J.R. Oberle, and J.A. Cooper. 2001. The surveillance mechanism of the spindle position checkpoint in yeast. J Cell Biol. 153:159-168.
Alexandru, G., W. Zachariae, A. Schleiffer, and K. Nasmyth. 1999. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18: 2707-2721.
Asakawa K., S. Yoshida, F. Otake, and A. Toh-e. 2001. A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae. Genetics 157:1437–1450.
Attner, M.A., and A. Amon. 2012. Control of the mitotic exit network during meiosis. Mol Biol Cell. 23:3122-3132.
Bloom, J., V. Amador, F. Bartolini, G. DeMartino, and M. Pagano. 2003. Proteasome‐ mediated degradation of p21 via N‐terminal ubiquitinylation. Cell. 115:71–82.
Briza, P., A. Ellinger, G. Winkler, and M. Breitenbach. 1988. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem. 263:11569-11574.
Briza, P., G. Winkler, H. Kalchhauser, and M. Breitenbach. 1986. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem. 261:4288-4294.
Buonomo, S. B., R. K. Clyne, J. Fuchs, J. Loidl, F. Uhlmann, and K. Nasmyth. 2000. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell. 103: 387–398.
Byers, B., and L. Goetsch. 1974. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 38:123-131.
Cashikar, A.G., M. Duennwald, and S.L. Lindquist. 2005. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280:23869–23875.
Caydasi, A.K., B. Ibrahim, and G. Pereira. 2010. Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div. 5:28.
Caydasi, A.K., M. Lohel, G. Grünert, P. Dittrich, G. Pereira, and B. Ibrahim, 2012. A dynamical model of the spindle position checkpoint. Molecular systems biology. 8:582.
Chang, Y., G.E. Wesenberg, C.A. Bingman, and B.G. Fox. 2008. In vivo inactivation of the mycobacterial integral membrane stearoyl coenzyme A desaturase DesA3 by a C-terminus-specific degradation process. J Bacteriol. 190:6686-6696.
Chen, C.-Y. 2007. The interation of Ady3 and Tem1 with Hsp26 in yeast sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwen, Nationsl Taiwam University.
Coulombe, P., G. Rodier, E. Bonneil, P. Thibault, and S. Meloche. 2004. N‐terminal ubiquitination of extracellular signal‐regulated kinase 3 and p21 directs their degradation by the proteasome. Mol. Cell Biol. 24:6140–6150.
D''Aquino K.E., F. Monje-Casas, J. Paulson, V. Reiser, G.M. Charles, L. Lai, K.M. Shokat, and A. Amon. 2015. The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol. Cell. 19:223–234.
Davidow, L.S., L. Goetsch, and B. Byers. 1980. Preferential occurrence of nonsister spores in two-spored asci of Saccharomyces cerevisiae: evidence for regulation of spore-wall formation by the spindle pole body. Genetics. 94:581-595.
Dix, D.J., J.W. Allen, B.W. Collins, P. Poorman-Allen, C. Mori, D.R. Blizard, P.R. Brown, E.H. Goulding, B.D. Strong, and E.M. Eddy. 1997. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development. 124:4595–4603.
Esposito, R.E., and S. Klapholz. 1981. Meiosis and ascospore development. Cold Spring Harbor Monograph Archive. 11:211-287.
Falk, J. E., L.Y. Chan, and A. Amon. 2011. Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4. Proceedings of the National Academy of Sciences. 108:12584-12590.
Feng, H.L., J.I. Sandlow, and A.E. Sparks. 2001. Decreased expression of the heat shock protein hsp70-2 is associated with the pathogenesis of male infertility. Fertil Steril. 76:1136–1139.
Geymonat, M., A. Spanos, S.J. Smith, E. Wheatley, K. Rittinger, L.H. Johnston, and S.G. Sedgwick. 2002. Control of mitotic exit in budding yeast. In vitro regulation of Tem1 GTPase by Bub2 and Bfa1. J. Biol. Chem. 277:28439–28445.
Grad, I., C.R. Cederroth, J. Walicki, C. Grey, S. Barluenga, N. Winssinger, B. De Massy, S. Nef, and D. Picard. 2010. The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One. 5:e15770.
Gupta, M.L., C.J. Bode, C.A. Dougherty, R.T. Marquez, and R.H. Himes. 2001. Mutagenesis of β-tubulin cysteine residues in Saccharomyces cerevisiae: mutation of cysteine 354 results in cold-stable microtubules. Cell Motil Cytoskeleton. 49:67–77.
Hartwell, L.H. 1974. Saccharomyces cerevisiae cell cycle. Bacteriol Rev. 38:164-198.
Haslbeck, M., A. Miess, T. Stromer, S. Walter, and J. Buchner. 2005. Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280:23861–23868.
Haslbeck, M., S. Walke, T. Stromer, M. Ehrnsperger, H.E. White, S. Chen, H.R. Saibil, and J. Buchner. 1999. Hsp26: a temperature‐regulated chaperone. EMBO J. 18:6744‐6751.
Herskowitz, I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 52:536-553.
Ho, T.-M. 2005. The role of yeast Hsp26 in sporulattion. Institute of Molecular and Cellular Biology. Taipei, Taiwen, Nationsl Taiwam University.
Huang, H.-Y. 2014. The mechanism of Hsp26 regulating spore formation in budding yeast. Institute of Molecular and Cellular Biology. Taipei, Taiwen, Nationsl Taiwam University.
Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. In J Bacteriol. Vol. 153. 163-168.
Jaspersen, S.L., and M. Winey. 2004. The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol. 20:1-28.
Jha, K.N., A.R. Coleman, L. Wong, A.M. Salicioni, E. Howcroft, and G.R. Johnson. 2013. Heat shock protein 90 functions to stabilize and activate the testis-specific serine/threonine kinases, a family of kinases essential for male fertility. J. Biol. Chem. 288:16308-16320.
Kamieniecki, R.J., L. Liu, and D.S. Dawson. 2005. FEAR but not MEN genes are required for exit from meiosis I. Cell Cycle. 4:1093–1098.
Katis, V.L., J. Matos, S. Mori, K. Shirahige, W. Zachariae, and K. Nasmyth. 2004. Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr. Biol. 14: 2183–2196.
Klapholz, S., and R.E. Esposito. 1980. Isolation of SPO12–1 and SPO13–1 from a natural variant of yeast that undergoes a single meiotic division. Genetics. 96:567-588.
Klein, F., P. Mahr, M. Galova, S.B. Buonomo, C. Michaelis, K. Nairz, and K. Nasmyth. 1999. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell. 98: 91–103.
Knop, M., and K. Strasser. 2000. Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J. 19:3657-3667.
Kurtz, S., J. Rossi, L. Petko, and S. Lindquist. 1986. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science. 231:1154-1157.
Lam, C., E. Santore, E. Lavoie, L. Needleman, N. Fiacco, C. Kim, and A.M. Neiman. 2014. A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot Cell. 13:383-391.
Lee, B.H., B.M. Kiburz, and A. Amon, 2004. Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr. Biol. 14: 2168–2182.
Lew, D.J., and D.J. Burke. 2003. The spindle assembly and spindle position checkpoints. Annu Rev Genet. 37:251-282.
Lillie, S.H., and S.S. Brown. 1994. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J Cell Biol. 125:825–842.
Lindquist, S., and E.A. Craig. 1988. The heat-shock proteins. Annu Rev Genet. 22:631-677.
Lynn, R.R., and P.T. Magee. 1970. Development of the spore wall during ascospore formation in Saccharomyces cerevisiae. J Cell Biol. 44:688-692.
Maier, P., N. Rathfelder, C.I. Maeder, J. Colombelli, E.H. Stelzer, and M. Knop. 2008. The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J. 27:2363-2374.
Makhnevych, T., P. Wong, O. Pogoutse, F.J. Vizeacoumar, J.F. Greenblatt, A. Emili, and W.A. Houry. 2012. Hsp110 is required for spindle length control. J. Cell Biol. 198:623-636.
McAlister, L., and D.B. Finkelstein. 1980. Heat shock proteins and thermal resistance in yeast. Biochem Biophys Res Commun. 93:819-824.
Miyazaki, W.Y., and T.L. Orr-Weaver. 1994. Sister-chromatid cohesion in mitosis and meiosis. Annu Rev Genet. 28:167–187.
Moens, P.B., and E. Rapport. 1971. Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol. 50:344-361.
Mohl D.A., M.J. Huddleston, T.S. Collingwood, R.S. Annan, and R.J. Deshaies. 2009. Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. J. Cell Biol. 184:527–539.
Moreno-Borchart, A.C., K. Strasser, M.G. Finkbeiner, A. Shevchenko, A. Shevchenko, and M. Knop. 2001. Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. EMBO J. 20:6946-6957. Moriya, H., Y. Shimizu-Yoshida, and H. Kitano. 2006. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet. 2:e218.
Neff, N.F., J.H. Thomas, P. Grisafi, and D. Botstein. 1983. Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell. 33:211-219.
Neiman, A.M. 1998. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol. 140:29-37.
Neiman, A.M. 2005. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 69:565-584.
Nickas, M.E., A.E. Diamond, M.J. Yang, and A. Neiman. 2004. Regulation of spindle pole function by an intermediary metabolite. Mol. Biol. Cell. 15:2606–2616.
Nickas, M.E., C. Schwartz, and A.M. Neiman. 2003. Ady4p and Spo74p are components of the meiotic spindle pole body that promote growth of the prospore membrane in Saccharomyces cerevisiae. Eukaryot Cell. 2:431-445.
Oka, M., M. Nakai, T. Endo, C.R. Lim, Y. Kimata, and K. Kohno. 1998. Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae. J. Biol. Chem. 273:29727–29737.
Palmer, R.E., D.S. Sullivan, T. Huffaker, and D. Koshland. 1992. Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 119:583–593.
Pereira, G., T. Hofken, J. Grindlay, C. Manson, and E. Schiebel. 2000. The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol Cell. 6:1-10.
Pereira, G., and E. Schiebel. 2005. Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol Cell. 19:209-221.
Petko, L., and S. Lindquist. 1986. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell. 45:885‐894
Roeder, G.S. 1997. Meiotic chromosomes: it takes two to tango. Genes Dev. 11:2600-2621.
Sambrook, J., and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual (Third edition). Cold spring harbor laboratory press.
Segal, M., and K. Bloom. 2001. Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol. 11:160-166.
Sherman, F., G.R. Fink, and J.B. Hicks. 1986. Methods in yeast genetics: a laboratory manual. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press)
Shonn, M.A., R. McCarroll, and A.W. Murray. 2000. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science. 289:300-303.
Smits, G.J., H. van den Ende, and F.M. Klis. 2001. Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology. 147:781-794.
Visintin, R., K. Craig, E.S. Hwang, S. Prinz, M. Tyers, and A. Amon. 1998. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell. 2:709-718.
Visintin, R., and A. Amon. 2001. Regulation of the mitotic exit protein kinases Cdc15 and Dbf2. Mol. Biol. Cell. 12:2961–2974.
Watanabe, Y., and P. Nurse. 1999. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature. 400: 461–464.
Yeh, E., R.V. Skibbens, J.W. Cheng, E.D. Salmon, and K. Bloom. 1995. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J Cell Biol. 130:687-700.
Yue, L., T.L. Karr, D.F. Nathan, H. Swift, S. Srinivasan, and S. Lindquist. 1999. Genetic analysis of viable hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics. 151:1065–1079.
Zhu, D., D.J. Dix, and E.M. Eddy. 1997. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development. 124:3007–3014.
Zimmerman, J.L., W. Petri, and M. Meselson. 1983. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell. 32:1161-1170.
|