|
1.Cameron, D.E., C.J. Bashor, and J.J. Collins, A brief history of synthetic biology. Nat Rev Microbiol, 2014. 12(5): p. 381-90. 2.Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403(6767): p. 335-338. 3.Guet, C.C., et al., Combinatorial Synthesis of Genetic Networks. Science, 2002. 296(5572): p. 1466-1470. 4.van Bloois, E., et al., Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol, 2011. 29(2): p. 79-86. 5.Kim, E.Y. and D. Tullman-Ercek, Engineering nanoscale protein compartments for synthetic organelles. Current Opinion in Biotechnology, 2013. 24(4): p. 627-632. 6.Huber, M.C., et al., Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat Mater, 2015. 14(1): p. 125-32. 7.Bowman, G.R., et al., Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol Microbiol, 2010. 76(1): p. 173-89. 8.Laloux, G. and C. Jacobs-Wagner, Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J Cell Biol, 2013. 201(6): p. 827-41. 9.Bowman, G.R., et al., Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Mol Microbiol, 2013. 90(4): p. 776-95. 10.Coquel, A.S., et al., Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol, 2013. 9(4): p. e1003038. 11.Saberi, S. and E. Emberly, Non-equilibrium polar localization of proteins in bacterial cells. PLoS One, 2013. 8(5): p. e64075. 12.Scheu, K., et al., Localization of aggregating proteins in bacteria depends on the rate of addition. Front Microbiol, 2014. 5: p. 418. 13.Ebersbach, G., et al., A Self-Associating Protein Critical for Chromosome Attachment, Division, and Polar Organization in Caulobacter. Cell, 2008. 134(6): p. 956-968. 14.Laloux, G. and C. Jacobs-Wagner, How do bacteria localize proteins to the cell pole? J Cell Sci, 2014. 127(Pt 1): p. 11-9. 15.Pan, C.-J., An individual-based computational model for polarization and asymmetric cell division in Escherichia coli, in Graduate Institute of Molecular and Cellular Biology. 2015, National Taiwan University. 16.Youk, H. and W.A. Lim, Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science, 2014. 343(6171): p. 1242782. 17.Terrell, J.L., et al., Nano-guided cell networks as conveyors of molecular communication. Nat Commun, 2015. 6: p. 8500. 18.Shetty, R.P., D. Endy, and T.F. Knight, Jr., Engineering BioBrick vectors from BioBrick parts. J Biol Eng, 2008. 2: p. 5. 19.Quan, J. and J. Tian, Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc, 2011. 6(2): p. 242-51. 20.Young, J.W., et al., Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc, 2012. 7(1): p. 80-8. 21.Bolte, S. and F.P. CordeliÈRes, A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 2006. 224(3): p. 213-232. 22.Cordelieres, F.P. and S. Bolte. JACoP v2. 0: improving the user experience with co-localization studies. in Proceedings of the 2nd ImageJ User and Developer Conference. 2008. 23.Paintdakhi, A., et al., Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol, 2016. 99(4): p. 767-77. 24.Chau, A.H., et al., Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell, 2012. 151(2): p. 320-32. 25.Liu, Y., A Synthetic Biology Platform for Polarized Protein Scaffold in Escherichia coli, in Graduate Institute of Molecular and Cellular Biology. 2015, National Taiwan University. p. 113. 26.Moran, M.A., et al., Sizing up metatranscriptomics. ISME J, 2013. 7(2): p. 237-243. 27.Spahn, C., U. Endesfelder, and M. Heilemann, Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J Struct Biol, 2014. 185(3): p. 243-9. 28.Lasker, K., et al., CauloBrowser: A systems biology resource for Caulobacter crescentus. Nucleic Acids Research, 2015. 29.Radhakrishnan, S.K., M. Thanbichler, and P.H. Viollier, The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Genes Dev, 2008. 22(2): p. 212-25. 30.Bergé, M., et al., IMPLICATION Of AN ANCESTRAL DNA BINDING DOMAIN IN CELL POLARIZATION, in 5th ASM Conference on Prokaryotic Cell Biology and Development. 2015: Washington, DC, USA. 31.Lozier, R.H., R.A. Bogomolni, and W. Stoeckenius, Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophysical Journal, 1975. 15(9): p. 955-962. 32.Luecke, H., et al., Structure of bacteriorhodopsin at 1.55 Å resolution 1. Journal of Molecular Biology, 1999. 291(4): p. 899-911. 33.Sankaranarayanan, S., et al., The Use of pHluorins for Optical Measurements of Presynaptic Activity. Biophysical Journal, 2000. 79(4): p. 2199-2208. 34.Buchanan, G., et al., A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Archives of Microbiology, 2001. 177(1): p. 107-112. 35.Cai, L., N. Friedman, and X.S. Xie, Stochastic protein expression in individual cells at the single molecule level. Nature, 2006. 440(7082): p. 358-362. 36.Raj, A. and A. van Oudenaarden, Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 2008. 135(2): p. 216-26. 37.Alexiev, U., et al., Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proceedings of the National Academy of Sciences, 1995. 92(2): p. 372-376. 38.Dove, S.L. and A. Hochschild, A Bacterial Two-Hybrid System Based on Transcription Activation, in Protein-Protein Interactions: Methods and Applications, H. Fu, Editor. 2004, Humana Press: Totowa, NJ. p. 231-246. 39.Segall-Shapiro, T.H., et al., A ''resource allocator'' for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol, 2014. 10: p. 742. 40.Schaerli, Y., M. Gili, and M. Isalan, A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res, 2014. 42(19): p. 12322-8. 41.Shis, D.L. and M.R. Bennett, Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(13): p. 5028-5033. 42.Qi, L., et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 2012. 43.Cameron, D.E. and J.J. Collins, Tunable protein degradation in bacteria. Nat Biotechnol, 2014. 32(12): p. 1276-81. 44.Haeusser, D.P. and W. Margolin, Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol, 2016. 14(5): p. 305-19. 45.Hale, C.A. and P.A.J. de Boer, Direct Binding of FtsZ to ZipA, an Essential Component of the Septal Ring Structure That Mediates Cell Division in E. coli. Cell, 1997. 88(2): p. 175-185. 46.Mosyak, L., et al., The bacterial cell‐division protein ZipA and its interaction with an FtsZ fragment revealed by X‐ray crystallography. The EMBO Journal, 2000. 19(13): p. 3179-3191. 47.Mateos-Gil, P., et al., Monitoring structural changes in intrinsically disordered proteins with QCM-D: Application to the bacterial cell division protein ZipA. Chem. Commun., 2016. 48.Garrity, M. Alan Turing and How Zebras Get Their Stripes. 2009; Available from: http://blog.garritys.org/2009/09/alan-turing-and-how-zebras-get-their-stripes.html. 49.Andersen, K.B. and K. von Meyenburg, Are growth rates of Escherichia coli in batch cultures limited by respiration? Journal of Bacteriology, 1980. 144(1): p. 114-123. 50.Gur, E. and R.T. Sauer, Evolution of the ssrA degradation tag in Mycoplasma: Specificity switch to a different protease. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(42): p. 16113-16118. 51.Park, S.-C., et al., Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Molecules and cells, 2006. 21(1): p. 129. 52.Cayley, S., et al., Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Journal of Molecular Biology, 1991. 222(2): p. 281-300. 53.Montero Llopis, P., et al., Spatial organization of the flow of genetic information in bacteria. Nature, 2010. 466(7302): p. 77-81. 54.Hays, S.G., et al., Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol, 2015. 36: p. 40-9. 55.So, L.-h., et al., General properties of transcriptional time series in Escherichia coli. Nat Genet, 2011. 43(6): p. 554-560. 56.Pai, A. and L. You, Optimal tuning of bacterial sensing potential. Molecular Systems Biology, 2009. 5(1).
|