跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪子喬
研究生(外文):Tzu-Chiao Hung
論文名稱:奠基於PopZ的細胞極化模組──空間上基因表現調控的全新方法
論文名稱(外文):PopZ-based Cellular Polarity Module──A Novel Way to Spatially Regulate Gene Expression
指導教授:黃筱鈞黃筱鈞引用關係
指導教授(外文):Hsiao-Chun Huang
口試委員:朱家瑩周信宏
口試委員(外文):Chia-Ying ChuHsin-Hung Chou
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:78
中文關鍵詞:合成生物學不對稱細胞分裂
外文關鍵詞:synthetic biologyPopZSpmXasymmetric cell division
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
合成生物學(synthetic biology)領域中有許多能控制蛋白質表達位置的工具。然而,這些工具多是將蛋白產物送往指定的目的,如特定胞器、細胞膜或者細胞外,而非一個空間上特定的區域。本研究所介紹的奠基於PopZ之細胞極化模組(PopZ-based cellular polarity module),能夠將目標蛋白送往細胞的一端或兩極處,進而使得在空間上調控基因表現達到史無前例的嶄新層級。
我們在大腸桿菌(Escherichia coli)中,表現新月柄桿菌(Caulobacter crescentus)的蛋白,藉以測試它們在正交環境(orthogonal context)中的適用性。其中,以PopZ做為細胞極的燈塔,並以SpmX的muramidase domain作為轉接頭,將其他作用蛋白帶往受PopZ標定的細胞極。我們首先分析這些蛋白的分布狀態與表現量、寡聚化效率(oligomerization efficiency)、SpmX完整性與稀釋速率等四項參數間的關係,並找出達到雙極化、單極化與四散分布的條件。此外,我們也以流式細胞儀與縮時顯微攝影,證明在特定條件下,PopZ在兩個子細胞間呈現不對稱分布。
接下來,我們探討如何實現本模組的三大特色:支架、極化與不對稱分裂。劉揚已於2015年以BiFC證實PopZ寡聚體能夠作為支架蛋白,讓標的蛋白之間的作用機會在局部提升;而藉由微米級細胞光電單元(micron-level cellular photovoltaic unit, MCPU)的企劃,我們討論此系統將胞內分子極化的應用性。最後,對於實現人工不對稱分裂,本文提出可能的作法,並佐以初步實驗與動態模擬結果,以期能利用T7 ploymerase與mfLon protease完成這個目標。
本研究的成果,提供合成生物學社群平台,使得更加複雜的系統成為可能。另一方面,不對稱細胞分裂這個充滿待解謎團的現象,亦隨著本研究結果的出爐,顯得更能夠捉摸。

In synthetic biology, there are many techniques to control where protein products are expressed. However, most of these tools only specify a certain target (eg. organelles, membrane or outside of the cell), instead of a spatially defined region. Our study, PopZ-based cellular polarity module, is able to localize cellular components to one or both cell poles, and provide a way to achieve an unprecedented level for spatial regulation of gene expression.
In this system, Caulobacter crescentus proteins are expressed in Escherichia coli to test their applicability in an orthogonal context. PopZ is adopted as the cell pole identifier, while SpmX’s muramidase domain is used as an adapter to bring effector proteins toward the PopZ-tagged pole. We first characterized the distribution of heterologously expressed molecules against four parameters: expression level, oligomerization efficiency, SpmX intactness and dilution rate, and found conditions where PopZ became either bipolar, unipolar or diffused. Furthermore, by using flow cytometry and time-lapse imaging, we demonstrated that under certain conditions, the introduced proteins could be asymmetrically partitioned to the daughter cells.
Next, we showcased three main features of the module: scaffold, polarization and asymmetric cell division. In 2015, Liu showed that PopZ aggregation can act as a scaffold to locally increase the interaction of target proteins using a split yellow fluorescent protein. We further demonstrated that our system can polarize cellular components of interest, using bacteriorhodopsin-based “micron battery” as an example. Moreover, T7 polymerase and mfLon protease were utilized to show that the system can also accomplish asymmetric cell division.
The results of this study present a promising platform on which the synthetic biology community can build more complicated systems. On the other hand, they also provide useful insights to asymmetric cell division, unveiling this perplexing phenomenon yet a step further.

摘要 i
Abstract iv
Contents vi
1. Introduction 1
1.1 Spatial Regulation Tools in the field of Synthetic Biology 1
1.2 Past studies on the polarity of Caulobacter crescentus 2
1.3 Conceptualization of a PopZ-based Cellular Polarity Module 3
1.4. Thesis organization 5
2. General Material and Method 6
2.1. Bacterial Strain and Culture 6
2.1.1. Strain 6
2.1.2. Culture Methods 6
2.1.3. Stocking Bacteria 7
2.2. Basic Cloning Methods 7
2.2.1. Plasmids and parts 7
2.2.2. Plasmid Mini Preparation 7
2.2.3. Restriction Enzyme Digestion 8
2.2.4. Gel Separation & Extraction 8
2.2.5. PCR 8
2.2.6. Clean up 9
2.2.7. Assembly Strategies 9
2.2.8. Transformation 10
2.2.9. Examination of Constructs 10
2.3. Microscopy 11
2.3.1. Device 11
2.3.2. Sample Preparation 11
2.4. Flow cytometry 12
2.5. Simulation 13
2.6. Data analysis 13
2.6.1. Image data 13
2.6.2. Flow cytometry data 14
2.6.3. Simulation results 14
3. Results and Discussion 15
3.1. PopZ Behavior inside E. coli 15
3.1.1. Summary of previous works 15
3.1.2. Experimental Setting 15
3.1.3. PopZ localization is affected by three parameters 16
3.1.4. Dynamics of PopZ foci in E. coli 18
3.2. Characterization of the Module 21
3.2.1. Necessity of an Adapter 21
3.2.2. Experimental Setting 22
3.2.3. Co-localization of PopZ and SpmX 22
3.2.4. The influence of SpmX variants on phenotype 24
3.2.5. Discussion 26
3.3. Attempts to build the mCPU 28
3.3.1. From basic research to applications 28
3.3.2. Previous works on mCPU 28
3.3.3. Attempts to measure pH difference between cell poles 29
3.4. Synthetic Asymmetric Cell Division 33
3.4.1. PopZ inheritance among daughter cells 33
3.4.2. Approaches to realize asymmetric cell division 34
3.4.3. Introducing antagonizing signal 35
3.4.4. Simulation of mfLon 37
4. Conclusion and Future Work 44
Figures 47
Tables 62
Appendix 67
Pseudocode for the simulation where s represented split T7 RNAP 67
Pseudocode for the simulation where s represented downstream proteins driven by pT7 71
References 75


1.Cameron, D.E., C.J. Bashor, and J.J. Collins, A brief history of synthetic biology. Nat Rev Microbiol, 2014. 12(5): p. 381-90.
2.Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403(6767): p. 335-338.
3.Guet, C.C., et al., Combinatorial Synthesis of Genetic Networks. Science, 2002. 296(5572): p. 1466-1470.
4.van Bloois, E., et al., Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol, 2011. 29(2): p. 79-86.
5.Kim, E.Y. and D. Tullman-Ercek, Engineering nanoscale protein compartments for synthetic organelles. Current Opinion in Biotechnology, 2013. 24(4): p. 627-632.
6.Huber, M.C., et al., Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat Mater, 2015. 14(1): p. 125-32.
7.Bowman, G.R., et al., Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol Microbiol, 2010. 76(1): p. 173-89.
8.Laloux, G. and C. Jacobs-Wagner, Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J Cell Biol, 2013. 201(6): p. 827-41.
9.Bowman, G.R., et al., Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Mol Microbiol, 2013. 90(4): p. 776-95.
10.Coquel, A.S., et al., Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol, 2013. 9(4): p. e1003038.
11.Saberi, S. and E. Emberly, Non-equilibrium polar localization of proteins in bacterial cells. PLoS One, 2013. 8(5): p. e64075.
12.Scheu, K., et al., Localization of aggregating proteins in bacteria depends on the rate of addition. Front Microbiol, 2014. 5: p. 418.
13.Ebersbach, G., et al., A Self-Associating Protein Critical for Chromosome Attachment, Division, and Polar Organization in Caulobacter. Cell, 2008. 134(6): p. 956-968.
14.Laloux, G. and C. Jacobs-Wagner, How do bacteria localize proteins to the cell pole? J Cell Sci, 2014. 127(Pt 1): p. 11-9.
15.Pan, C.-J., An individual-based computational model for polarization and asymmetric cell division in Escherichia coli, in Graduate Institute of Molecular and Cellular Biology. 2015, National Taiwan University.
16.Youk, H. and W.A. Lim, Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science, 2014. 343(6171): p. 1242782.
17.Terrell, J.L., et al., Nano-guided cell networks as conveyors of molecular communication. Nat Commun, 2015. 6: p. 8500.
18.Shetty, R.P., D. Endy, and T.F. Knight, Jr., Engineering BioBrick vectors from BioBrick parts. J Biol Eng, 2008. 2: p. 5.
19.Quan, J. and J. Tian, Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc, 2011. 6(2): p. 242-51.
20.Young, J.W., et al., Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc, 2012. 7(1): p. 80-8.
21.Bolte, S. and F.P. CordeliÈRes, A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 2006. 224(3): p. 213-232.
22.Cordelieres, F.P. and S. Bolte. JACoP v2. 0: improving the user experience with co-localization studies. in Proceedings of the 2nd ImageJ User and Developer Conference. 2008.
23.Paintdakhi, A., et al., Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol, 2016. 99(4): p. 767-77.
24.Chau, A.H., et al., Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell, 2012. 151(2): p. 320-32.
25.Liu, Y., A Synthetic Biology Platform for Polarized Protein Scaffold in Escherichia coli, in Graduate Institute of Molecular and Cellular Biology. 2015, National Taiwan University. p. 113.
26.Moran, M.A., et al., Sizing up metatranscriptomics. ISME J, 2013. 7(2): p. 237-243.
27.Spahn, C., U. Endesfelder, and M. Heilemann, Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J Struct Biol, 2014. 185(3): p. 243-9.
28.Lasker, K., et al., CauloBrowser: A systems biology resource for Caulobacter crescentus. Nucleic Acids Research, 2015.
29.Radhakrishnan, S.K., M. Thanbichler, and P.H. Viollier, The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Genes Dev, 2008. 22(2): p. 212-25.
30.Bergé, M., et al., IMPLICATION Of AN ANCESTRAL DNA BINDING DOMAIN IN CELL POLARIZATION, in 5th ASM Conference on Prokaryotic Cell Biology and Development. 2015: Washington, DC, USA.
31.Lozier, R.H., R.A. Bogomolni, and W. Stoeckenius, Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophysical Journal, 1975. 15(9): p. 955-962.
32.Luecke, H., et al., Structure of bacteriorhodopsin at 1.55 Å resolution 1. Journal of Molecular Biology, 1999. 291(4): p. 899-911.
33.Sankaranarayanan, S., et al., The Use of pHluorins for Optical Measurements of Presynaptic Activity. Biophysical Journal, 2000. 79(4): p. 2199-2208.
34.Buchanan, G., et al., A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Archives of Microbiology, 2001. 177(1): p. 107-112.
35.Cai, L., N. Friedman, and X.S. Xie, Stochastic protein expression in individual cells at the single molecule level. Nature, 2006. 440(7082): p. 358-362.
36.Raj, A. and A. van Oudenaarden, Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 2008. 135(2): p. 216-26.
37.Alexiev, U., et al., Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proceedings of the National Academy of Sciences, 1995. 92(2): p. 372-376.
38.Dove, S.L. and A. Hochschild, A Bacterial Two-Hybrid System Based on Transcription Activation, in Protein-Protein Interactions: Methods and Applications, H. Fu, Editor. 2004, Humana Press: Totowa, NJ. p. 231-246.
39.Segall-Shapiro, T.H., et al., A ''resource allocator'' for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol, 2014. 10: p. 742.
40.Schaerli, Y., M. Gili, and M. Isalan, A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res, 2014. 42(19): p. 12322-8.
41.Shis, D.L. and M.R. Bennett, Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(13): p. 5028-5033.
42.Qi, L., et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 2012.
43.Cameron, D.E. and J.J. Collins, Tunable protein degradation in bacteria. Nat Biotechnol, 2014. 32(12): p. 1276-81.
44.Haeusser, D.P. and W. Margolin, Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol, 2016. 14(5): p. 305-19.
45.Hale, C.A. and P.A.J. de Boer, Direct Binding of FtsZ to ZipA, an Essential Component of the Septal Ring Structure That Mediates Cell Division in E. coli. Cell, 1997. 88(2): p. 175-185.
46.Mosyak, L., et al., The bacterial cell‐division protein ZipA and its interaction with an FtsZ fragment revealed by X‐ray crystallography. The EMBO Journal, 2000. 19(13): p. 3179-3191.
47.Mateos-Gil, P., et al., Monitoring structural changes in intrinsically disordered proteins with QCM-D: Application to the bacterial cell division protein ZipA. Chem. Commun., 2016.
48.Garrity, M. Alan Turing and How Zebras Get Their Stripes. 2009; Available from: http://blog.garritys.org/2009/09/alan-turing-and-how-zebras-get-their-stripes.html.
49.Andersen, K.B. and K. von Meyenburg, Are growth rates of Escherichia coli in batch cultures limited by respiration? Journal of Bacteriology, 1980. 144(1): p. 114-123.
50.Gur, E. and R.T. Sauer, Evolution of the ssrA degradation tag in Mycoplasma: Specificity switch to a different protease. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(42): p. 16113-16118.
51.Park, S.-C., et al., Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Molecules and cells, 2006. 21(1): p. 129.
52.Cayley, S., et al., Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Journal of Molecular Biology, 1991. 222(2): p. 281-300.
53.Montero Llopis, P., et al., Spatial organization of the flow of genetic information in bacteria. Nature, 2010. 466(7302): p. 77-81.
54.Hays, S.G., et al., Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol, 2015. 36: p. 40-9.
55.So, L.-h., et al., General properties of transcriptional time series in Escherichia coli. Nat Genet, 2011. 43(6): p. 554-560.
56.Pai, A. and L. You, Optimal tuning of bacterial sensing potential. Molecular Systems Biology, 2009. 5(1).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top