跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊乃璇
研究生(外文):Nai-Hsuan Yang
論文名稱:鋰離子電池碳基負極材料表面改質製備與研究
論文名稱(外文):Study on Surface Modification of Carbon Anode for Lithium-ion Batteries
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
口試委員:顏溪成廖英志吳玉祥吳弘俊顏瑞賓
口試委員(外文):Shi-Chern YenYing-Chih LiaoYu-Shiang WuHung-Chun WuJui-Pin Yen
口試日期:2015-12-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:138
中文關鍵詞:鋰離子電池負極石墨無定型碳材料微波合成表面改質
外文關鍵詞:Li-ion batteryanodegraphitedisordered carbonsiliconmicrowave synthesissurface modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用不同之表面改質技術對碳基負極材料進行處理,進而達到降低首次充放電不可逆電容量、提高循環壽命、改善快速充放電容量下降,以及提升電容量等目標。
首先,無定型碳材料具有極佳的循環壽命穩定性,然而其在首次充放電之不可逆電容量較石墨負極高很多,且電容量也較石墨低,因此本研究使用表面改質的方式對無定型碳材料首次充放電之不可逆電容量較石墨負極高與電容量也較石墨低的問題加以改善。使用不同高分子對無定型碳材料進行表面改質,由結果顯示無定型碳材料之首次不可逆值會受到比表面積之影響。同時,使用不同之瀝青包覆製程,可再次映證表面包覆層之覆蓋均勻度,對無定型碳之表面改質與首次充放電不可逆值有明顯的影響。研究中顯示出使用適量之高分子,對無定型碳材料進行表面包覆,不僅能使其不可逆值降低到20%以內,同時仍能維持材料本身極佳循環壽命之特性。最後,本研究在進行表面包覆時,添加少量之高容量矽奈米顆粒,期望能對無定型碳材料較低之電容量做進一步之改善。結果顯示所添加之矽奈米顆粒能夠均勻的分散在無定型碳材料表面,同時,此材料在1C的速率下進行循環壽命測試,於70圈後仍然有約75% 之可逆電容量保存率。
本研究同時也利用微波輔助,配合液態含矽前驅物,成功合成出具高速充放電穩定性之矽氧化物/石墨複合材料。傳統矽(矽氧化物)/碳複合材料,常使化學氣相沉積法,並配合具毒性之氣態含矽前驅物(矽烷或四氯化矽)製備。此一製程不僅危險、製程時間長且耗能﹔相較於傳統製程,微波製程具有操作時間短、液態前驅物安全、以及具選擇性等優點。在此部分,分別使用了奈米碳管、石墨片與石墨球進行包覆,由掃描式電子顯微鏡可以觀察到,由於微波加熱具有選擇性,碳及石墨基材能在短時間內被加熱到極高的溫度,並使得其周圍之液體裂解,並沉積在基材表面,形成一包覆均勻且完整之矽氧化物鍍膜層。由於此鍍膜層非熱的良導體也非微波的受體,因此鍍膜層達到一定厚度之後便不會再繼續增厚(通常所形成的鍍膜層厚度僅約幾奈米)。所得之矽氧化物/石墨複合材料進行電性測試,發現不僅在電容量上有所提升,改變放電速率時表現出極佳的穩定性,在循環壽命上也有傑出的表現,在快速充放電的條件下100圈後庫倫效率可達99.9%以上,經500次高速充放電後,仍然保有95%左右之可逆電容量的保存率。
本研究使用不同的表面改質技術,皆能夠有效的提升碳基負極材料之可逆電容量,並表現出不錯的循環壽命,同時,本研究所採用之改質技術較傳統製程簡單、安全與快速,提供日後鋰離子電池負極材料材料合成與設計新的概念。


In this work, the reversible capacity, cycle life stability and rate performance can be improved by using different surface modification process.
As we know, disordered carbon reveal good cycle life stability. However, despite of the favorable features, the large initial irreversible capacity and low specific capacity still are big problems and needed to be solved. Surface modification method was used to solve the weak points. The results showed that the first-cycle irreversible capacity of the disordered carbon anode and its specific surface area has a strong positive correlation. And the result was also proved by using different kinds of pitch coating process. From electrochemical test, the initial irreversibiluty can be lower than 20% by using polymer coating and the electrodes still remain good cycle stability. Small amount of Si nanoparticles was used for further improvement of the charge capacity. The Si nanoparticles can be well distribute on the disordered carbon surface by combining polymer and pitch coating. The charge capacity retention is around 75% when cycle at 1C rate after 70 cycles.
Secondly, a Si oxide-coated graphite composite anode for Li-ion batteries (LIBs) was synthesized using a microwave-assisted coating method. In this synthesis, a solution comprising liquid polysiloxanes is used as the Si-containing precursor. For conventional synthesis process, people usually use chemical vapor deposition and toxic Si-containing vapor precursors, such as SinHm or SiHxCly. On the contrary, microwave-assisted coating method is safe, saving energy, and selective when doing the process. Here, carbon nano tube, graphite flake and graphite sphere were used as the microwave absorbent. Heating the graphite or carbon with microwave induces the deposition of a Si-containing conformal layer on the particle surfaces. Because the deposited layer is not microwave absorbent, it is also not good heat conductor. When the coating grew to certain thickness the reaction will stop (the thickness of the coating is around nano-scale). The resulting sample was subsequently calcined to produce SiOx/graphite composite. When tested as a LIB anode, the resulting composites exhibited an improvement in reversible specific capacity, good rate performance and excellent cyclability. When cycle at high C rate, all the composite electrodes showed the average coulombic efficiency higher than 99.9% after 100 cycles and the charge capacity retention were around 95% after 500 cycles. In this work, several polymer were chose to do surface modification.
The reversible capacity, cycle life stability and rate performance of carbon anode can be improved by using different surface modification process. The results suggest new strategies for both designing and synthesizing high-performance anode materials for LIB applications.


致謝 I
摘要 III
Abstract V
Table of Content VII
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
Chapter 2 Theory and Literature Review 3
2.1 Background and Fundamental Knowledge for Rechargeable Lithium-ion Batteries 3
2.1.1 Basic Concepts of Lithium-ion Batteries 4
2.1.2 Historical Developments of Li-battery Research 8
2.2 Introduction to Anode Materials for Lithium-ion Batteries 12
2.3 Introduction to Carbonaceous Anode Materials 15
2.3.1 Disordered Carbons 19
2.3.2 Graphite 22
2.3.3 Solid Electrolyte Interphase (SEI) Formation on Carbonaceous Anodes 25
2.4 Introduction to Silicon (Si) Anode Material 30
2.4.1 Solid Electrolyte Interphase (SEI) Formation on Si Anodes 37
2.4.2 Si Anodes with Different Binders 40
2.5 Investigation on Si/C Composite Anode Materials 45
Chapter 3 Experimental 49
3.1 Materials and Chemicals 49
3.2 Synthesis of Anode Materials 52
3.2.1 Preparation of the liquid silicone precursor 52
3.2.2 Synthesis of silicon oxide on graphite composite 53
3.2.3 Preparation of disordered carbon coated by water-soluble polymer 55
3.2.4 Pitch-coated Disordered Carbon 57
3.2.5 Preparation of Si/disordered carbon composites 59
3.3 Material Analyses and Characterizations 61
3.3.1 Scanning Electron Microscopy 61
3.3.2 Transmission Electron Microscopy 61
3.3.3 Thermo Gravimetric Analysis 62
3.3.4 Surface Area and Pore Structure Analyses 62
3.3.5 Fourier Transform Infrared Spectroscopy 63
3.4 Electrochemical Characterizations 65
3.4.1 Preparation of Electrodes and Cells 65
3.4.2 Cell Assembling and Dismantling 68
3.4.3 Charge/Discharge Test 70
3.4.4 Cyclic Voltammetry 70
Chapter 4 Surface Modification of Disordered Carbons 72
4.1 Introduction 72
4.2 Microstructural Characterization 77
4.3 Electrochemical Characterization 80
4.4 Si/DC composite 92
4.5 Summary 96
Chapter 5 Using Microwave-Assisted Coating Method to Synthesize Silicon Oxide/Graphite Composite 97
5.1 Introduction 97
5.2 Microwave Heating Principle 98
5.3 Microstructural Characterization of the Silicon Oxide Coated Graphite Composite 100
5.4 Electrochemical Characterization of the Silicon Oxide Coated Graphite Composite 108
5.5 Summary 118
Chapter 6 Conclusions 119
References 121


1.M. N. Obrovac and L. Christensen, "Structural changes in silicon anodes during lithium insertion/extraction", Electrochemical and Solid-State Letters, 7, A93-A96 (2004)
2.W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, and N. L. Wu, "Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive", Journal of Power Sources, 140, 139-144 (2005)
3.N. S. Choi, K. H. Yew, W. U. Choi, and S. S. Kim, "Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder", Journal of Power Sources, 177, 590-594 (2008)
4.N. Dimov, S. Kugino, and M. Yoshio, "Mixed silicon–graphite composites as anode material for lithium ion batteries: Influence of preparation conditions on the properties of the material", Journal of Power Sources, 136, 108-114 (2004)
5.H. Y. Lee and S. M. Lee, "Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries", Electrochemistry Communications, 6, 465-469 (2004)
6.X. Zhou, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, "Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries", Advanced Energy Materials, 2, 1086–1090 (2012)
7.H. Jung, M. Park, S. H. Han, H. Lim, and S.-K. Joo, "Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries", Solid State Communications, 125, 387-390 (2003)
8.M. Holzapfel, H. Buqa, F. Krumeich, P. Novák, F. M. Petrat, and C. Veit, "Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries", Electrochemical and Solid-State Letters, 8, A516-A520 (2005)
9.A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, "High-performance lithium-ion anodes using a hierarchical bottom-up approach", Nature Materials, 9, 353–358 (2010)
10.W. R. Liu, Y. C. Yen, H. C. Wu, M. Winter, and N. L. Wu, "Nano-porous SiO/carbon composite anode for lithium-ion batteries", Journal of Applied Electrochemistry, 39, 1643-1649 (2009)
11.H. Kim, M. Seo, M. H. Park, and J. Cho, "A critical size of silicon nano-anodes for lithium rechargeable batteries", Angewandte Chemie International Edition, 49, 2146-2149 (2010)
12.M. Saito, K. Nakai, M. Hagiwara, A. Tasaka, T. Takenaka, M. Hirota, A. Kamei, and M. Inaba, "Negative electro properties of Sn and Si leaf power for Li-ion batteries", ECS Transactions, 25, 101-108 (2010)
13.J. M. Tarascon, and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359-367 (2001)
14.G. A. Nazri and G. Pistoia, Lithium batteries - Science and technology, Kluwer Academic Publishers, Boston (2004)
15.R. M. Dell, "Batteries: fifty years of materials development", Solid State Ionics, 134, 139–158 (2000)
16.M. S. Whittingham, "Electrical energy storage and intercalation chemistry", Science, 192, 1126-1127 (1976)
17.M. S. Whittingham, "Chalcogenide Battery", US patent 4009052 (1977).
18.D. W. Murphy, J. Broadhead, and B. C. H. Steele, Materials for advanced batteries. Plenum Press, New York. (1980)
19.D. W. Murphy, F. J. D. Salvo, J. N. Carides, and J. V. Waszczak, "Topochemical reactions of rutile related structures with lithium", Materials Research Bulletin, 13, 1395–1402 (1978)
20.M. Lazzari and B. Scrosati, "A cyclable lithium organic electrolyte cell based on two intercalation electrodes", Journal of the Electrochemical Society, 127, 773-774 (1980)
21.T. Nagaura and K. Tozawa, "Lithium ion rechargeable battery", Progress in Batteries and Solar Cells, 9, 209 (1990)
22.E. a. E. International Conference on Fast Ion Transport in Solids. Fast ion transport in solids: electrodes, and electrolytes: proceedings of the International Conference. 1979. New York: North Holland.
23.I. E. Kelly, J. R. Owen, and B. C. H. Steele, "Poly (ethylene oxide) electrolytes for operation at near room temperature", Journal of Power Sources, 14, 13-21 (1985)
24.J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, "Performance of bellcore''s plastic rechargeable li-ion batteries", Solid State Ionics, 86-8, 49-54 (1996)
25.吴宇平, 戴晓兵, 马军旗, and 程预江, 锂离子电池--应用与实践. 化学工业出版社.(2004)
26.D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, "A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions", Solid State Ionics, 148, 405-416 (2002)
27.P. B. Balbuena, and Y. Wang, Lithium-ion batteries : Solid-electrolyte interphase, Imperial College Press, London (2004)
28.P. N. Cheremisinoff and F. Ellerbusch, Carbon adsorption handbook. Ann Arbor Science Publishers. (1978)
29.K. Kinoshita, Carbon: Electrochemical and physicochemical properties. John Wiley & Sons. (1987)
30.H. O. Pierson, Handbook of carbon, graphite, diamond and fullerenes: Properties, Processing and Applications (Materials Science and Process Technology), Noyes Publications. (1993)
31.R.E. Franklin, "Crystallite growth in graphitizing and non-graphitizing carbons", Proceedings of the Royal Society, A209, 196–218 (1951)
32.M. Wakihara, "Recent developments in lithium ion batteries", Materials Science and Engineering: R: Reports, 33, 109-134 (2001)
33.J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, "Mechanisms for lithium insertion in carbonaceous materials", Science, 270, 590-593 (1995)
34.T. Zheng, J. N. Reimers, and J. R. Dahn, "Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium", Physical Review B, 51, 734-741 (1995)
35.T. Zheng and J. R. Dahn, "Effect of turbostratic disorder on the staging phase diagram of lithium-intercalated graphitic carbon hosts", Physical Review B, 53, 3061-3071 (1996)
36.T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. v. Sacken, and J. R. Dahn, "Lithium insertion in high capacity carbonaceous materials", Journal of The Electrochemical Society, 142, 2581-2590 (1995)
37.T. Zheng, J. S. Xue, and J. R. Dahn, "Lithium insertion in hydrogen-containing carbonaceous materials", Chemistry of Materials, 8, 389–393 (1996)
38.T. Zheng, W. R. McKinnon, and J. R. Dahn, "Hysteresis during lithium insertion in hydrogen‐containing carbons", Journal of The Electrochemical Society, 143, 2137-2145 (1996)
39.T. Zheng, Q. Zhong, and J. R. Dahn, "High capacity carbons prepared from phenolic resin for anodes of lithium‐ion batteries", Journal of The Electrochemical Society, 142, L211-L214 (1995)
40.Y. Liu, J. S. Xue, T. Zheng, and J. R. Dahn, "Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins", Carbon, 34, 193-200 (1996)
41.T. Zheng, W. Xing, and J. R. Dahn, "Carbons prepared from coals for anodes of lithium-ion cells", Carbon, 34, 1501-1507 (1996)
42.B. McEnaney, Carbon materials for advanced technologies, T. D. Burchell, Ed., Pergamon, Elesevier, Amsterdam (1999)
43.N. Sonobe, M. Ishikawa, and T. Iwasaki, paper 2B09, in 35th Battery Symposium in Japan. 1994.
44.M. Ishikawa, N. Sonobe, H. Chuma, and T. Iwasaki, paper 2B10, in 35th Battery Symposium in Japan. 1994.
45.J.R. Dahn, A.K. Sleigh, Hang Shi, B.W. Way, W.J. Weydanz, J.N. Reimers, Q. Zhong, and U. von Sacken, “Carbons and graphites as substitutes for the lithium anode”, in Lithium Batteries, G. Pistoia, Elsevier, North Holland (1993)
46.H. Shi, J. N. Reimers, and J. R. Dahn, "Structure-refinement program for disordered carbons", Journal of Applied Crystallography, 26, 827-836 (1993)
47.R. E. Franklin, "The structure of carbon", Journal of Chemical Physics, 47, 573–575 (1950)
48.P.L. Walker, Chemisty and Physics of Carbon, Jr., Marcel Dekker Inc., N.Y. (1965, 1966)
49.B. E. Warren, "X-Ray diffraction in random layer lattices", Physical Review, 59, 693 (1941)
50.E. Peled, Lithium batteries. Academic. (1983)
51.A. Funabiki, M. Inaba, T. Abe, and Z. Ogumi, "Stage transformation of lithium-graphite intercalation compounds caused by electrochemical lithium intercalation", Journal of The Electrochemical Society, 146, 2443-2448 (1999)
52.E. Peled, D. Golodnitsky, G. Ardel, C. Menachem, D. Bar-Tow, and V. Eshkenazy, "The role of sei in lithium and lithium ion batteries", MRS Proceedings, 393, 209 (1995)
53.E. Peled, D. Golodnitsky, and G. Ardel, "Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes", Journal of the Electrochemical Society, 144, L208-L210 (1997)
54.R. Fong, U. v. Sacken, and J. R. Dahn, "Studies of lithium intercalation into carbons using nonaqueous electrochemical cells", Journal of the Electrochemical Society, 137, 2009-2013 (1990)
55.E. Peled, D. Golodnitsky, G. Ardel, and V. Eshkenazy, "The sei model—application to lithium-polymer electrolyte batteries", Electrochimica Acta, 40, 2197–2204 (1995)
56.J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, "Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes", Journal of Power Sources, 54, 228–231 (1995)
57.D. Guerard and A. Herold, "Intercalation of lithium into graphite and other carbons", Carbon, 13, 337-345 (1975)
58.J. O. Besenhard, "The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes", Carbon, 14, 111-115 (1976)
59.J. O. Besenhard, H. Möhwald, and J. J. Nickl, "Electronic conductivity and structure of DMSO-solvated A+ - and NR4+-graphite intercalation compounds", Carbon, 18, 399-405 (1980)
60.S. Basu, U. S. Patent 4304825 (1981)
61.R. Yazami and P. Touzain, "A reversible graphite-lithium negative electrode for electrochemical generators", Journal of Power Sources, 9, 365-371 (1983)
62.A. N. Dey, "Electrochemical alloying of lithium in organic electrolytes", Journal of the Electrochemical Society, 118, 1547-1549 (1971)
63.R. A. Sharma and R. N. Seefurth, "Thermodynamic properties of the lithium‐silicon system", Journal of the Electrochemical Society, 123, 1763-1768 (1976)
64.B. A. Boukamp, G. C. Lesh, and R. A. Huggins, "All‐solid lithium electrodes with mixed‐conductor matrix", Journal of the Electrochemical Society, 128, 725-729 (1981)
65.C. v. d. Marel, G. J. B. Vinke, and W. v. d. Lugt, "The phase diagram of the system lithium-silicon", Solid State Communications, 54, 917-919 (1985)
66.C. J. Wen and R. A. Huggins, "Chemical diffusion in intermediate phases in the lithium-silicon system", Journal of Solid State Chemistry, 37, 271-278 (1981)
67.J. W. Kim, J. H. Ryu, K. T. Lee, and S. M. Oh, "Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries", Journal of Power Sources, 147, 227-233 (2005)
68.W. J. Weydanz, M. Wohlfahrt-Mehrens, and R. A. Huggins, "A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries", Journal of Power Sources, 81–82, 237-242 (1999)
69.B. Gao, S. Sinha, L. Fleming, and O. Zhou, “Alloy Formation in Nanostructured Silicon", Advanced Materials, 13, 816-819 (2001)
70.J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J.-P. Pérès, D. Talaga, M. Couzi, and J.-M. Tarascon, "Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon Composites", Advanced Functional Materials, 17, 1765–1774 (2007)
71.G. X. Wang, J. Yao, and H. K. Liu, "Characterization of nanocrystalline Si-MCMB composite anode materials", Electrochemical and Solid-State Letters, 7, A250-A253 (2004)
72.H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. J. Mo, and N. Pei, "The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature", Solid State Ionics, 135, 181-191 (2000)
73.P. Limthongkul, Y. I. Jang, N. J. Dudney, and Y. M. Chiang, "Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage", Acta Materialia, 51, 1103-1113 (2003)
74.A. Netz, R. A. Huggins, and W. Weppner, "The formation and properties of amorphous silicon as negative electrode reactant in lithium systems", Journal of Power Sources, 119-121, 95-100 (2003)
75.T. D. Hatchard and J. R. Dahn, "In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon", Journal of the Electrochemical Society, 151, A838-A842 (2004)
76.J. Li and J. R. Dahn, "An in situ X-Ray diffraction study of the reaction of Li with crystalline Si", Journal of the Electrochemical Society, 154, A156-A161 (2007)
77.C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, "Li-alloy based anode materials for Li secondary batteries", Chemical Society Reviews, 39, 3115-3141 (2010)
78.J. R. Szczech and S. Jin, "Nanostructured silicon for high capacity lithium battery anodes", Energy & Environmental Science, 4, 56-72 (2011)
79.J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, "Highly reversible lithium storage in nanostructured silicon", Electrochemical and Solid-State Letters, 6, A194-A197 (2003)
80.S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, "A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life", Journal of Power Sources, 136, 303-306 (2004)
81.J. P. Maranchi, A. F. Hepp, and P. N. Kumta, "High capacity, reversible silicon thin-film anodes for lithium-ion batteries", Electrochemical and Solid-State Letters, 6, A198-A201 (2003)
82.T. L. Kulova, A. M. Skundin, Y. V. Pleskov, E. I. Terukov, and O. I. Kon’kov, "Lithium insertion into amorphous silicon thin-film electrodes", Journal of Electroanalytical Chemistry, 600, 217-225 (2007)
83.U. Kasavajjula, C. Wang, and A. J. Appleby, "Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells", Journal of Power Sources, 163, 1003-1039 (2007)
84.J. Cho, "Porous Si anode materials for lithium rechargeable batteries", Journal of Materials Chemistry, 20, 4009-4014 (2010)
85.C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High-performance lithium battery anodes using silicon nanowires", Nature Nanotechnology, 3, 31-35 (2008)
86.M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, "Silicon nanotube battery anodes", Nano Letters, 9, 3844–3847 (2009)
87.K. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. Lee, G. Lee, Y. M. Kang, and M. H. Jo, "Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery", Applied physics letters, 96, 053110 (2010)
88.H. Kim and J. Cho, "Superior lithium electroactive mesoporous Si@ Carbon core− shell nanowires for lithium battery anode material", Nano Letters, 8, 3688-3691 (2008)
89.R. Huang, X. Fan, W. Shen, and J. Zhu, "Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes", Applied Physics Letters, 95, 133119 (2009)
90.C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cu, "Solution-grown silicon nanowires for lithium-ion battery anodes", Acs Nano, 4, 1443–1450 (2010)
91.W. Wang and P. N. Kumta, "Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes", Acs Nano, 4, 2233–2241 (2010)
92.L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, "Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes", Nano Letters, 9, 491–495 (2009)
93.H. Otaa, Y. Sakata, A. Inoue, and S. Yamaguchi, "Analysis of vinylene carbonate derived SEI layers on graphite anode", Journal of the Electrochemical Society, 151, A1659-A1669 (2004)
94.D. P. Abraham, M. M. Furczon, S. H. Kang, D. W. Dees, and A. N. Jansen, "Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells", Journal of Power Sources, 180, 612-620 (2008)
95.Y. C. Yen, S. C. Chao, H. C. Wu, and N. L. Wu, "Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells", Journal of the Electrochemical Society, 156, A95-A102 (2009)
96.L. Chen, K. Wang, X. Xie, and J. Xie, "Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries", Journal of Power Sources, 174, 538-543 (2007)
97.N. S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, and S. S. Kim, "Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode", Journal of Power Sources, 161, 1254-1259 (2006)
98.S. W. Song and S. W. Baek, "Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries", Electrochemical and Solid-State Letters, 12, A23-A27 (2009)
99.M. Q. Li, M. Z. Qu, X. Y. He, and Z. L. Yu, "Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries", Electrochimica Acta, 54, 4506-4513 (2009)
100.C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes", Journal of Power Sources, 189, 1132-1140 (2009)
101.W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chia, and N. L. Wu, "Enhanced cycle life of Si anode for Li-Ion batteries by using modified elastomeric binder", Electrochemical and Solid-State Letters, 8, A100-A103 (2005)
102.J. Li, L. Christensen, M. N. Obrovac, K. C. Hewitt, and J. R. Dahn, "Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder", Journal of the Electrochemical Society, 155, A234-A238 (2008)
103.J. Li, R. B. Lewis, and J. R. Dahn, "Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-Ion batteries", Electrochemical and Solid-State Letters, 10, A17-A20 (2007)
104.B. Lestriez, S. Bahri, I. Sandu, L. Roué, and D. Guyomard, "On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries", Electrochemistry Communications, 9, 2801-2806 (2007)
105.N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wöhrle, C. Wurm, and M. Winter, "Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability", Electrochemical and Solid-State Letters, 11, A76-A80 (2008)
106.D. Mazouzi, B. Lestriez, L. Roué, and D. Guyomard, "Silicon composite electrode with high capacity and long cycle life", Electrochemical and Solid-State Letters, 12, A215-A218 (2009)
107.I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, "A major constituent of brown algae for use in high-capacity Li-ion batteries", Science, 334, 75-79 (2011)
108.N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, and C. Chen, "Improvement of cyclability of Si as anode for Li-ion batteries", Journal of Power Sources, 192, 644-651 (2009)
109.J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, "Failure modes of silicon powder negative electrode in lithium secondary batteries", Electrochemical and Solid-State Letters, 7, A306-A309 (2004)
110.M. Holzapfel, H. Buqa, W. Scheifele, P. Novák, and F. M. Petrat, "A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion", Chemical Communications, 12, 1566-1568 (2005)
111.S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J. M. Tarascon, "Si electrodes for Li-Ion batteries—A new way to look at an old problem", Journal of the Electrochemical Society, 155, A158-A163 (2008)
112.M. Winter and J. O. Besenhard, "Electrochemical lithiation of tin and tin-based intermetallics and composites", Electrochimica Acta, 45, 31-50 (1999)
113.D. Larcher, S. Beattie, M. Morcrette, K. Edström, J. C. Jumas, and J. M. Tarascon, "Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries", Journal of Materials Chemistry, 17, 3759 (2007)
114.B. C. Smith, Fundamentals of Fourier transform infrared spectroscopy, CRC Press, Boca Raton (1996)
115.M. E. Spahr, H. Wilhelm, F. Joho, J. C. Panitz, J. Wambach, P. Novák, and N. Dupont-Pavlovsky, "Purely hexagonal graphite and the influence of surface modifications on its electrochemical lithium insertion properties", Journal of The Electrochemical Society, 149, A960-A966 (2002)
116.P. Verma. T. Sasaki. P. Novák, "Chemical surface treatments for decreasing irreversible charge loss and preventing exfoliation of graphite in Li-ion batteries", Electrochimica Acta, 82, 233-242 (2012)
117.H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, and P. Novák, "Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries", Journal of Power Sources, 161, 617-622 (2006)
118.S. Komaba, N. Yabuuchi, T. Ozeki, K. Okushi, H. Yui, K. Konno, Y. Katayama, and T. Miura, "Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media", Journal of Power Sources, 195, 6069-6074 (2010)
119.K. E. H. Hatano, "Reduction of irreversible capacity by coating with polymeric amine compound over artificial graphite for anode of lithium ion secondary batteries", Electrochemistry, 73, 429-434 (2005)
120.Q. Pan, K. Guo, L. Wang, and S. Fang, "Ionic conductive copolymer encapsulated graphite as an anode material for lithium ion batteries", Solid State Ionics, 149, 193-200 (2002)
121.S. Komaba, K. Okushi, T. Ozeki, H. Yui, Y. Katayama, T. Miura, T. Saito, and H. Groult, "Polyacrylate modifier for graphite anode of lithium-ion batteries", Electrochemical and Solid-State Letters, 12, A107-A110 (2009)
122.E. Peled, "The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model", Journal of the Electrochemical Society, 126, 2047-2051 (1979)
123.V. Eshkenazi, E. Peled, L. Burstein, and D. Golodnitsky, "XPS analysis of the SEI formed on carbonaceous materials", Solid State Ionics, 170, 83-91 (2004)
124.H. Ota, T. Akai, H. Namita, S. Yamaguchi, and M. Nomura, "XAFS and TOF–SIMS analysis of SEI layers on electrodes", Journal of Power Sources, 119-121, 567–571 (2003)
125.H. Buqa, R. I. R. Blyth, P. Golob, B. Evers, I. Schneider, M. V. S. Alvarez, F. Hofer, F. P. Netzer, M. G. Ramsey, M. Winter, and J. O. Besenhard, "Negative electrodes in rechargeable lithium ion batteries-Influence of graphite surface modification on the formation of the solid electrolyte interphase ", Ionics, 6, 172-179 (2000)
126.M. R. Wagner, P. R. Raimann, A. Trifonova, K. C. Möller, J. O. Besenhard, and M. Winter, "Dilatometric and mass spectrometric investigations on lithium ion battery anode materials", Analytical and Bioanalytical Chemistry, 379, 272-276 (2004)
127.M. Winter, "The solid electrolyte interphase – The most important and the least understood solid electrolyte in rechargeable Li batteries.", Zeitschrift für Physikalische Chemie International journal of research in physical chemistry and chemical physics, 223, 1395-1406 (2009)
128.K. Xu, "“Charge-Transfer” Process at graphite/electrolyte interface and the solvation sheath structure of Li + in nonaqueous electrolytes", Journal of the Electrochemical Society, 154, A162-A167 (2007)
129.T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, and Z. Ogumi, "Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-A key to enhancing the rate capability of lithium-ion batteries", Journal of the Electrochemical Society, 152, A2151-A2154 (2005)
130.Y. P. Wu, E. Rahm, and R. Holze, "Carbon anode materials for lithium ion batteries", Journal of Power Sources, 114, 228-236 (2003)
131.T. Takamura, K. Sumiya, J. Suzuki, C. Yamada, and K. Sekine, "Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film", Journal of Power Sources, 81, 368-372 (1999)
132.H. Huang, E. M. Kelder, and J. Schoonman, "Graphite–metal oxide composites as anode for Li-ion batteries", Journal of Power Sources, 97-98, 114-117 (2001)
133.J. Drofenik, M. Gaberšček, R. Dominko, M. Bele, and S. Pejovnik, "Carbon anodes prepared from graphite particles pretreated in a gelatine solution", Journal of Power Sources, 94, 97-101 (2001)
134.M. Bele, M. Gaberscek, R. Dominko, J. Drofenik, K. Zupan, P. Komac, K. Kocevar, I. Musevic, and S. Pejovnik, "Gelatin-pretreated carbon particles for potential use in lithium ion batteries", Carbon, 40, 1117-1122 (2002)
135.G. C. Chung, H. J. Kim, S. I. Yu, S. H. Jun, J. w. Choi, and M. H. Kim, "Origin of graphite exfoliation an investigation of the important role of solvent cointercalation", Journal of the Electrochemical Society, 147, 4391-4398 (2000)
136.I. S. Kang, Y. S. Lee, D. W. Kim, “Improved cycling stability of lithium electrodes in rechargeable lithium batteries”, Journal of the Electrochemical Society 161, A53-A57 (2014)
137.L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, "Surface modifications of electrode materials for lithium ion batteries", Solid State Sciences, 8, 113-128 (2006)
138.H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, and P. Novák, "Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries", Journal of Power Sources, 161, 617-622 (2006)
139.E. Krämer, R. Schmitz, P. Niehoff, S. Passerini, and M. Winter, "SEI-forming mechanism of 1-Fluoropropane-2-one in lithium-ion batteries", Electrochimica Acta, 81, 161-165 (2012)
140.S. Menkin, D. Golodnitsky, and E. Peled, "Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications", Electrochemistry Communications, 11, 1789-1791 (2009)
141.P. Verma. P. Novák, "Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite", Carbon, 50, 2599-2614 (2012)
142.F. S. Li, Y. S. Wu, J. Chou, M. Winter, and N. L. Wu, "A Mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery Anodes", Advanced Materials, 27, (2015)
143.D. Adam, "Microwave chemistry: Out of the kitchen", Nature, 421, 571–572 (2003)
144.C. R. Strauss and R. W. Trainor, "Developments in microwave-assisted organic chemistry", Australian Journal of Chemistry, 48, 1665 - 1692 (1995)
145.C. R. Strauss, "Invited review. A combinatorial approach to the development of environmentally benign organic chemical preparations ", Australian Journal of Chemistry 52, 83-96 (1999)
146.A. d. l. Hoz, A. Díaz-Ortis, A. Moreno, and F. Langa, "Cycloadditions under microwave irradiation conditions: methods and applications", European Journal of Organic Chemistry, 22, 3659–3673 (2000)
147.J. Hamelin, J. P. Bazureau, F. Texier- Boullet, Microwaves in Organic Synthesis, Wiley-VCH, Wein-heim, (2002)
148.N. Elander, J. R. Jones, S. Y. Lu, and S. S. Elander, "Microwave-enhanced radiochemistry", Chemical Society Reviews, 29, 239-249 (2000)
149.M. Larhed, and K. Olofsson, Microwaves methods in Organic Synthesis. Wiley-VCH, Springer-Verlag Berlin Heidelberg. (2006)
150.W. B. Snyder, W. H. Sutton, M. F. Iskander, and D. L. Johnson, Microwave Processing of Materials, Materials Research Society, (1990)
151.A. d. l. Hoz, Á. Díaz-Ortiz, and A. Moreno, "Microwaves in organic synthesis. Thermal and non-thermal microwave effects", Chemical Society Reviews, 34, 164-178 (2005)
152.S. F. Adam, Microwave Theory and Applications. Adam Microwave Consulting. (1992)
153.M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. Shirakata, “Analysis of SiO anodes for lithium-ion batteries”, Journal of Electrochemical Society, 152, A2089-A2091 (2005)
154.N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Y. Cui, "Prelithiated silicon nanowires as an anode for lithium ion batteries", ACS Nano, 5, 6487–6493 (2011)
155.H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, "Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control", Nature Nanotechnology, 7, 310–315 (2012)
156.M. W. Forney, M. J. Ganter, J. W. Staub, R. D. Ridgley, and B. J. Landi, "Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP)", Nano Letters, 13, 4158–4163 (2013)
157.J. Zhao, Z. Lu, H. Wang, W. Liu, H.-W. Lee, K. Yan, D. Zhuo, D. Lin, N. Liu, and Y. Cui, "Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries", Journal of The American Chemical Society, 137, 8372–8375 (2015)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊