跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宇凡
研究生(外文):Yu-Fan Lee
論文名稱:單一軟球擴散泳現象
論文名稱(外文):Diffusiophoretic Motion of an Isolated ChargedSoft Particle
指導教授:李克強李克強引用關係
指導教授(外文):Eric Lee
口試委員:陳賢燁游佳欣
口試委員(外文):Hsien-Yeh ChenJiashing Yu
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:116
中文關鍵詞:擴散泳軟球濃度梯度極化效應電雙層
外文關鍵詞:DiffusiophoresisSoft ParticlePolarization EffectConcentration GradientElectrical Double Layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究著重於高電位的單一軟球擴散泳系統。文中,我們首先回顧擴散泳理論與軟球電動力學發展相關文獻與相關應用,再針對近年軟球擴散泳理論做延伸,利用得以處理高度非線性問題的數值方法,發展出計算高電位單一軟球擴散泳之程式系統,打破以往單一軟球擴散泳解析解低電位之限制。參數上,我們討論電解質濃度κa的影響,亦探討在軟球結構對電動力學的相應變化,我們深入剖析了軟球層(硬球核)比例b/a與軟球層摩擦係數λa對擴散泳的影響。

研究結果發現於電性上,在電雙層厚度適中時(約0.1<κa<10),雖然此時電雙層變形驅動的極化效應(化學泳效應)較強,然而我們仍必須同時考慮流動貢獻的極化效應,特別是硬球核σ*帶高電荷量,抑或軟球層電荷密度Qfix帶高電荷量皆會造成嚴重的流動貢獻極化效應,會使得擴散泳動度大幅降低,也就是說若使用低電位的解析解會嚴重高估擴散泳動度。其中有趣的是,當硬球核電荷密度帶非常高電量時,擴散泳可能會發生反向運動的狀況,其原因可以由其誘發的不均勻擾動電位解釋。

在結構上,軟球中硬球核的存在的影響應同時考慮流力與電力的共同作用,此外,軟球層摩擦係數λa大至1以上時,擴散泳動度才會有明顯的變化,特別的是當λa過大時,擴散泳亦會發生反向運動的現象,其原因來自於兩旁流動造成的渦漩,使其往反方向運動。

考慮現今大量高帶電量的奈米複合型軟球粒子應用於生技、藥物控制、生物影響標記等技術,發展高電位(高帶電量)軟球擴散泳模型對於軟球粒子發展與應用有其必要性,我們的計算結果對單一軟球擴散泳而言,無論在電性上與流力性質上皆無任何限制,在此情況下許多特殊的非線性現象會發生:流動貢獻極化效應、速度反轉等現象,我們期望本研究結果能給予軟球系統研究者無論在理論與實驗上更準確定性與定量上的預測。


The diffusiophoretic motion of a uniformly distributed charge soft particle suspended in an infinite medium of electrolyte solution is studied in this paper. The resulted nonlinear electrokinetic equations governing the diffusiophoretic motion are solved numerically with a pseudo-spectral method based on Chebyshev polynomials. In particular, the convection contribution of the ion flux and the polarization effect are taken into account.

Key parameters of electrokinetic interest are examined for their respective effect on the particle motion, and the results presented here show the particle diffusiophoretic mobility deviates significantly from the analytical prediction using linear Poisson-Boltzmann equation. Meanwhile, it is also found that a soft particle may reverse its direction with a high surface charge condition of the hard core, which significantly influences the diffusiophoretic motion. These results provide more information about the general electrokinetic behavior of a soft particle such as sphere polyelectrolyte brushes, polymer-coated colloidal particles and other engineered nanoparticles (ENPs), which has a great potential in treating systems of biochemical or microfluidic interests.


中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
Chapter 1 緒論 1
1.1 膠體系統 1
1.2 軟球粒子 7
1.3 擴散泳理論 10
1.4 膠體粒子擴散泳現象的相關應用 13
1.5 擴散泳文獻回顧 17
1.6 軟物質擴散泳模型 20
1.7 研究動機 23
Chapter 2 理論分析 24
2.1 電動力學方程組 25
2.1.1 電位方程式 26
2.1.2 離子守恆式 27
2.1.3 流場方程式 28
2.2 平衡態與擾動態 32
2.2.1 平衡態 35
2.2.2 擾動態 36
2.3 邊界條件 39
2.4 二維系統的一維化 45
2.5 系統無因次化分析 47
2.6 數值無窮遠邊界處理方法 52
2.7 粒子受力計算 56
2.8 泳動度之計算 57
Chapter 3 數值方法 60
3.1 正交配位法 60
3.2 空間映射 64
3.3 多區聯解問題 66
3.4 牛頓-拉福森 (Newton-Raphson) 疊代法 69
3.5 擾動態多變數聯解 72
3.6 數值積分 74
Chapter 4 結果討論 76
4.1 驗證程式正確性 77
4.1.1 比對Keh軟球擴散泳解析解 77
4.2 軟球層帶電之影響 80
4.3 硬球核存在之影響 84
4.4 硬球核比例之影響 89
4.5 摩擦係數之影響 91
Chapter 5 結論 94
參考資料 97
附錄A 常見電解質水溶液參數值 104
附錄B 座標系統簡介 107
附錄C 力積分之推導 111
附錄D 擴散泳相關邊界條件推導 115


1.Shaw, D.J. and B. Costello, Introduction to colloid and surface chemistry: Butterworth-Heinemann, Oxford, 1991, ISBN 0 7506 1182 0, 306 pp,£ 14.95. 1993, Elsevier.
2.Hunter, R.J., Foundations of colloid science. 2001: Oxford University Press.
3.Park, K., Controlled drug delivery: challenges and strategies. 1997: Amer Chemical Society.
4.Donath, E. and V. Pastushenko, Electrophoretical study of cell surface properties. The influence of the surface coat on the electric potential distribution and on general electrokinetic properties of animal cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979. 104: p. 543-554.
5.Selmi, F., Studies on the demulsion of silver chloride. Nuovi Ann Sci Nat Di Bologna series II, 1845. 4: p. 146.
6.Eastlake, C., M. Faraday, and W. Russell, Report on the Protection by Glass of the Pictures in the National Gallery. House of Commons, 1850. 24.
7.Graham, T., Liquid diffusion applied to analysis. Philosophical Transactions of the Royal Society of London, 1861. 151: p. 183-224.
8.Derjaguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS, 1941. 14(6): p. 633-662.
9.Verwey, E.J.W., J.T.G. Overbeek, and K. Van Nes, Theory of the Stability of Lyophobic Colloids: the Interaction of Sol Particles Having an Electric Double Layer. 1948: Elsevier New York.
10.Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. Electrokinetic and Colloid Transport Phenomena. 2005: John Wiley & Sons, Inc.
11.Everett, D.H. and D. Everett, Basic principles of colloid science. Vol. 144. 1988: Royal Society of Chemistry London.
12.Hunter, R., Foundations of Colloid Science. Hunter, RJ, Foundations of Colloid Science. Vol. 1. 1987: Oxford University Press.
13.Helmholtz, H., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 1853. 165(6): p. 211-233.
14.Gouy, G., Constitution of the electric charge at the surface of an electrolyte. Journal of Physics, 1910. 9(4): p. 457-467.
15.Chapman, D.L., LI. A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481.
16.Shaw, D.J., Introduction to Colloid and Surface Chemistry. Introduction to Colloid and Surface Chemistry (Fourth Edition), ed. D.J. Shaw. 1992, Oxford: Butterworth-Heinemann.
17.Wunderlich, R., The effects of surface structure on the electrophoretic mobilities of large particles. Journal of Colloid and Interface Science, 1982. 88(2): p. 385-397.
18.Levine, S., et al., Theory of the electrokinetic behavior of human erythrocytes. Biophysical journal, 1983. 42(2): p. 127.
19.Sharp, K.A. and D.E. Brooks, Calculation of the electrophoretic mobility of a particle bearing bound polyelectrolyte using the nonlinear Poisson-Boltzmann equation. Biophysical journal, 1985. 47(4): p. 563.
20.Ballauff, M. and O. Borisov, Polyelectrolyte brushes. Current Opinion in Colloid & Interface Science, 2006. 11(6): p. 316-323.
21.Balazs, A.C., et al., Theory of polymer chains tethered at interfaces. Progress in surface science, 1997. 55(3): p. 181-269.
22.Wittemann, A. and M. Ballauff, Secondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy. Analytical chemistry, 2004. 76(10): p. 2813-2819.
23.Galaev, I.Y. and B. Mattiasson, ‘Smart’polymers and what they could do in biotechnology and medicine. Trends in biotechnology, 1999. 17(8): p. 335-340.
24.Mei, Y., et al., High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir, 2005. 21(26): p. 12229-12234.
25.Sharma, G. and M. Ballauff, Cationic spherical polyelectrolyte brushes as nanoreactors for the generation of gold particles. Macromolecular rapid communications, 2004. 25(4): p. 547-552.
26.Santer, S. and J. Rühe, Motion of nano-objects on polymer brushes. Polymer, 2004. 45(25): p. 8279-8297.
27.Parak, W.J., et al., Biological applications of colloidal nanocrystals. Nanotechnology, 2003. 14(7): p. R15.
28.Huang, C.H., et al., Electrophoresis of a Soft Particle within a Cylindrical Pore: Polarization Effect with the Nonlinear Poisson-Boltzmann Equation. J Phys Chem B., 2010. 114(31): p. 10114-10125.
29.Lee, E., W.-L. Cheng, and J.-P. Hsu, Effect of stress-jump condition on electrophoretic behavior of a spherical dispersion of soft particles. Journal of colloid and interface science, 2006. 296(2): p. 756-761.
30.Cheng, W.-L., Y.-Y. He, and E. Lee, Electrophoresis of a soft particle normal to a plane. Journal of colloid and interface science, 2009. 335(1): p. 130-139.
31.Ballauff, M., Spherical polyelectrolyte brushes. Progress in Polymer Science, 2007. 32(10): p. 1135-1151.
32.Yadav, V., W. Duan, and A. Sen, DIFFUSIOPHORETIC NANO AND MICROSCALE PROPULSION AND COMMUNICATION. Engineering of Chemical Complexity II, 2014. 12: p. 73.
33.Velegol, D., et al., Origins of concentration gradients for diffusiophoresis. Soft matter, 2016. 12(21): p. 4686-4703.
34.Delgado, A., Interfacial electrokinetics and electrophoresis. 2002: CRC.
35.Prieve, D.C., et al., MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .2. ELECTROLYTES. Journal of Fluid Mechanics, 1984. 148(NOV): p. 247-269.
36.Lechnick, W.J. and J.A. Shaeiwitz, MEASUREMENT OF DIFFUSIOPHORESIS IN LIQUIDS. Journal of Colloid and Interface Science, 1984. 102(1): p. 71-87.
37.Anderson, J.L., M.E. Lowell, and D.C. Prieve, MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .1. NON-ELECTROLYTES. Journal of Fluid Mechanics, 1982. 117(APR): p. 107-121.
38.Dukhin, S.S. and B.V. Deryagin, eds. Surface and Colloid Science. Vol. 7. 1974, Wiley: New York.
39.Bakanov, S.P. and V.I. Roldughin, Diffusiophoresis in Gases. Aerosol Science and Technology, 1987(7): p. 249-255.
40.Pilat, M.J. and A. Prem, Effect of diffusiophoresis and thermophoresis on overall particle collection efficiency of spray droplet scrubbers. Journal of the Air Pollution Control Association, 1977(27): p. 982-988.
41.Jaworek, A., et al., Wet Electroscrubbers for State of the Art Gas Cleaning. Environmental Science and Technology, 2006(40): p. 6197-6207.
42.Dukhin, S.S., et al., DIFFUSIOPHORESIS IN ELECTROLYTE-SOLUTIONS AND ITS APPLICATION TO THE FORMATION OF SURFACE-COATINGS. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 1982. 31(8): p. 1535-1544.
43.Deryagin, B., S. Dukhin, and A. Korotkova, INFLUENCE OF NATURE OF ELECTROLYTES IN LATEX ON THE PROCESS OF FILM FORMATION BY IONIC DEPOSITION. COLLOID JOURNAL OF THE USSR, 1978. 40(4): p. 531-536.
44.Prieve, D.C., et al., Chemiphoresis: Acceleration of hydrosol deposition by ionic surface reactions. Journal of Colloid and Interface Science, 1979. 71(2): p. 267-272.
45.Prieve, D.C., H.L. Gerhart, and R.E. Smith, CHEMIPHORESIS - METHOD FOR DEPOSITION OF POLYMER-COATINGS WITHOUT APPLIED ELECTRIC-CURRENT. Industrial & Engineering Chemistry Product Research and Development, 1978. 17(1): p. 32-36.
46.Ulberg, Z. and A. Dukhin, Electrodiffusiophoresis-film formation in Ac and Dc electrical fields and its application for bactericidal coatings. Progress in organic coatings, 1990. 18(1): p. 1-41.
47.Abécassis, B. and et al., Osmotic manipulation of particles for microfluidic applications. New Journal of Physics, 2009. 11(7): p. 075022.
48.Abecassis, B., et al., Boosting migration of large particles by solute contrasts. Nature Materials, 2008. 7(10): p. 785-789.
49.Yadav, V., et al., Triggered "on/off" micropumps and colloidal photodiode. J Am Chem Soc, 2012. 134(38): p. 15688-91.
50.Yadav, V., et al., Bone-crack detection, targeting, and repair using ion gradients. Angew Chem Int Ed Engl, 2013. 52(42): p. 10997-1001.
51.McDermott, J.J., et al., Self-Generated Diffusioosmotic Flows from Calcium Carbonate Micropumps. Langmuir, 2012. 28(44): p. 15491-15497.
52.Kar, A., et al., Particle Deposition on Microporous Membranes Can Be Enhanced or Reduced by Salt Gradients. Langmuir, 2014. 30(3): p. 793-799.
53.Dukhin, S. and B. Derjaguin, Surface and Colloid Science. by E. Matjevic, Wiley, New York, 1974. 7: p. 36.
54.Anderson, J.L., M.E. Lowell, and D.C. Prieve, Motion of a particle generated by chemical gradients .1. Non-electrolytes. Journal of fluid mechanics, 1982(117): p. 101-121.
55.Prieve, D.C. and R. Roman, DIFFUSIOPHORESIS OF A RIGID SPHERE THROUGH A VISCOUS ELECTROLYTE SOLUTION. Journal of the Chemical Society-Faraday Transactions Ii, 1987. 83: p. 1287-1306.
56.Obrien, R.W. and L.R. White, Electrophoretic Mobility of a Spherical Colloidal Particle. Journal of the Chemical Society-Faraday Transactions Ii, 1978. 74: p. 1607-1626.
57.Lou, J., C.Y. Shih, and E. Lee, Diffusiophoresis of Concentrated Suspensions of Spherical Particles with Charge-regulated Surface: Polarization Effect with Nonlinear Poisson-Boltzmann Equation. Langmuir, 2010. 26(1): p. 47-55.
58.Lou, J., C.Y. Shih, and E. Lee, Diffusiophoresis of a spherical particle normal to an air-water interface. Journal of Colloid and Interface Science, 2009. 331(1): p. 227-235.
59.Lou, J. and E. Lee, Diffusiophoresis of a spherical particle normal to a plane. Journal of Physical Chemistry C, 2008. 112(7): p. 2584-2592.
60.Chang, Y.C. and H.J. Keh, Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls. Journal of Colloid and Interface Science, 2008. 322(2): p. 634-653.
61.Keh, H.J. and Y.L. Li, Diffusiophoresis in a suspension of charge-regulating colloidal spheres. Langmuir, 2007. 23(3): p. 1061-1072.
62.Hsu, J.P., et al., Diffusiophoresis of concentrated suspensions of spherical particles with distinct ionic diffusion velocities. Journal of Physical Chemistry B, 2007. 111(10): p. 2533-2539.
63.Lou, J., Y.Y. He, and E. Lee, Diffusiophoresis of concentrated suspensions of spherical particles with identical ionic diffusion velocities. Journal of Colloid and Interface Science, 2006. 299(1): p. 443-451.
64.Chen, P.Y. and H.J. Keh, Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls. Journal of Colloid and Interface Science, 2005. 286(2): p. 774-791.
65.Wei, Y.K. and H.J. Keh, Diffusiophoresis in a suspension of spherical particles with arbitrary double-layer thickness. Journal of Colloid and Interface Science, 2002. 248(1): p. 76-87.
66.Chen, P.Y. and H.J. Keh, Diffusiophoresis of a colloidal sphere in nonelectrolyte gradients parallel to one or two plane walls. Chemical Engineering Science, 2002. 57(15): p. 2885-2899.
67.Wei, Y.K. and H.J. Keh, Diffusiophoresis and electrophoresis in concentrated suspensions of charged colloidal spheres. Langmuir, 2001. 17(5): p. 1437-1447.
68.Keh, H.J. and Y.K. Wei, Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir, 2000. 16(12): p. 5289-5294.
69.Keh, H.J. and S.C. Luo, Particle interactions in diffusiophoresis: Axisymmetric motion of multiple spheres in electrolyte gradients. Langmuir, 1996. 12(3): p. 657-667.
70.Keh, H.J. and J.S. Jan, Boundary effects on diffusiophoresis and electrophoresis: Motion of a colloidal sphere normal to a plane wall. Journal of Colloid and Interface Science, 1996. 183(2): p. 458-475.
71.Staffeld, P.O. and J.A. Quinn, DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .1. ELECTROLYTES. Journal of Colloid and Interface Science, 1989. 130(1): p. 69-87.
72.Staffeld, P.O. and J.A. Quinn, DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .2. NON-ELECTROLYTES. Journal of Colloid and Interface Science, 1989. 130(1): p. 88-100.
73.Ebel, J.P., J.L. Anderson, and D.C. Prieve, DIFFUSIOPHORESIS OF LATEX-PARTICLES IN ELECTROLYTE GRADIENTS. Langmuir, 1988. 4(2): p. 396-406.
74.Lechnick, W.J. and J.A. Shaeiwitz, ELECTROLYTE CONCENTRATION-DEPENDENCE OF DIFFUSIOPHORESIS IN LIQUIDS. Journal of Colloid and Interface Science, 1985. 104(2): p. 456-470.
75.Shaeiwitz, J.A. and W.J. Lechnick, TERNARY DIFFUSION FORMULATION FOR DIFFUSIOPHORESIS. Chemical Engineering Science, 1984. 39(5): p. 799-807.
76.Doane, T.L., et al., Electrophoretic mobilities of PEGylated gold NPs. Journal of the American Chemical Society, 2010. 132(44): p. 15624-15631.
77.Zhang, X., et al., Diffusiophoresis of a soft spherical particle in a spherical cavity. The Journal of Physical Chemistry B, 2009. 113(25): p. 8646-8656.
78.Hsu, W.-L., J.-P. Hsu, and S. Tseng, Diffusiophoresis of a soft spherical particle along the axis of a cylindrical microchannel. Chemical Engineering Science, 2011. 66(10): p. 2199-2210.
79.Tseng, S., Y.C. Chung, and J.P. Hsu, Diffusiophoresis of a soft, pH-regulated particle in a solution containing multiple ionic species. J Colloid Interface Sci, 2015. 438: p. 196-203.
80.Fang, W. and E. Lee, Diffusiophoretic motion of an isolated charged porous sphere. J Colloid Interface Sci, 2015. 459: p. 273-83.
81.Gopmandal, P.P., et al., Electrophoresis of diffuse soft particles with dielectric charged rigid core grafted with charge regulated inhomogeneous polymer segments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 504: p. 116-125.
82.Huang, P.Y. and H.J. Keh, Diffusiophoresis of a spherical soft particle in electrolyte gradients. J Phys Chem B, 2012. 116(25): p. 7575-89.
83.Ahualli, S., et al., Electrophoresis and dielectric dispersion of spherical polyelectrolyte brushes. Langmuir, 2012. 28(47): p. 16372-81.
84.Abhyankar, V.V., et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip, 2006. 6(3): p. 389-393.
85.Diao, J., et al., A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab on a Chip, 2006. 6(3): p. 381-388.
86.Smith, R.L., C.J. Demers, and S.D. Collins, Microfluidic device for the combinatorial application and maintenance of dynamically imposed diffusional gradients. Microfluidics and Nanofluidics, 2010. 9(4-5): p. 613-622.
87.Ohshima, H., Theory of colloid and interfacial electric phenomena. 2006: Academic Press.
88.Hussaini, M. and T. Zang, Spectral methods in fluid dynamics. Annual Review of Fluid Mechanics, 1987. 19(1): p. 339-367.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊