跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張剛獻
研究生(外文):Kang-Hsien Chang
論文名稱:微米矽/奈米矽作為鋰離子電池負極材料之放電性能模擬
論文名稱(外文):The Simulation of the Lithium-ion Batteries With Micro/Nano scaled Silicon Anode
指導教授:顏溪成顏溪成引用關係
口試委員:周偉龍蔡子萱吳永富
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:鋰離子電池矽負極材料多孔性電極
外文關鍵詞:Li-ion batteriesSi electrodePorous electrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子電池因為具有高能量密度、高電位、放電平台穩定、工作溫度區間大、高可逆性、低自放電率等等優勢,近年來已廣泛應用於小型電子產品。隨著材料以及製程的發展,電能效率以及操作電壓的提升,高功率的鋰電池應用於電動車的環境也越來越普遍。
本研究主要從基本原理出發,推導非線性的擴散行為,以此修正Fick’s Law。而此鋰離子數學模擬系統以電化學為基礎,透過熱力學、輸送現象、歐姆定律、電極動力學等等理論的輔助之下,轉換為複數的數學關係式,接著利用數值方法來收斂尋找實數解、以程式軟體進行擬合找出參數。最後利用找出的參數進行兩組電池(微米矽/奈米矽)在不同電流環境下對不同參數的反應程度之研究。
模擬結果顯示在不同電流環境之下,比起線性擴散,非線性擴散行為能更正確的描述電池放電行為。在低電流環境以及接近放電終點時線性擴散的擬合結果與非線性擴散的擬合結果相近。電池在不同電流環境下對參數反應的趨勢大致相同、程度各異。在趨勢方面,減小電極材料顆粒粒徑、增加電極材料厚度、增加固相擴散係數、降低孔隙度都可以提升單位體積的能量密度。


中文摘要 1
英文摘要 2
目錄 3
圖目錄 5
表目錄 8
第一章 緒論 9
1.1 鋰電池介紹 9
1.2 鋰電池材料選擇因素 10
1.3 鋰電池電化學系統 12
1.4 研究動機 14
第二章 文獻回顧 15
2.1 鋰電池研究方向 15
2.2 鋰電池數學模型發展 17
2.3 鋰電池電化學工程數學模型分析 20
2.4 當前重要議題與研究方向 29
第三章 理論分析 32
3.1 濃溶液理論 32
3.2 多孔性電極理論 36
3.3 固態系統擴散現象 38
3.4 固液介面的電極動力學 39
3.5 開環電位 42
第四章 數值方法與模擬 43
4.1 有限元素分析 43
4.2 牛頓法求解非線性 48
4.3 求解流程 49
4.4 電池規格與參數 53
第五章 結果與討論 55
5.1 實驗及模擬環境討論 55
5.2 線性擴散及非線性擴散模擬 56
5.3 非線性擴散模擬參數之合理性 59
5.4 參數變化對各電池組效能之影響 67
第六章 結論 84
符號說明 87
參考文獻 90


1.Shriram Santhanagopalan, Q.G., Premanand Ramadass, Ralph E. White, Review of models for predicting the cycling performance of lithium ion batteries. Journal of Power Sources, 2006. 156(2): p. 620-628.
2.Whittingham, M.S., Electrical Energy-Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
3.K. Mizushima, P.C.J., P. J. Wiseman, J. B. Goodenough, A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
4.Thackeray, M.M.D., W. I. F.; Bruce, P. G.; Goodenough, J. B, Lithium insertion into manganese spinels. . Materials Research Bulletin, 1983. 18(4): p. 461.
5.Nazri, G.a.P., Gianfranco, Lithium batteries: science and Technology. 2004.
6.Voelcker, J., Lithium Batteries Take to the Road. IEEE Spectrum, 2010.
7.Manthiram, A.G., J. B. , Lithium insertion into Fe2(SO4)3 frameworks. Journal of Power Sources, 1989. 26(3-4): p. 403.
8.Padhi, A.K., Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. . Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1110.
9.Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
10.Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
11.Ramadesigan, V., et al., Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective. Journal of the Electrochemical Society, 2012. 159(3): p. R31.
12.Newman, J., et al., Modeling of lithium-ion batteries. Journal of Power Sources, 2003. 119: p. 838-843.
13.Shishko, R., et al., NASA systems engineering handbook. 1995, [Washington, D.C.?]: National Aeronautics and Space Administration.
14.Doyle, M., T.F. Fuller, and J. Newman, Modeling of Galvanostatic Charge and Discharge of the Lithium Polymer Insertion Cell. Journal of the Electrochemical Society, 1993. 140(6): p. 1526-1533.
15.Van der Ven, A., et al., Nondilute diffusion from first principles: Li diffusion in Li(x)TiS(2). Physical Review B, 2008. 78(10).
16.Van der Ven, A. and G. Ceder, Lithium diffusion in layered LixCoO2. Electrochemical and Solid State Letters, 2000. 3(7): p. 301-304.
17.Bortz, A.B., M.H. Kalos, and J.L. Lebowitz, New Algorithm for Monte-Carlo Simulation of Ising Spin Systems. Journal of Computational Physics, 1975. 17(1): p. 10-18.
18.Bhattacharya, J. and A. Van der Ven, Phase stability and nondilute Li diffusion in spinel Li_{1+x}Ti_{2}O_{4}. Physical Review B, 2010. 81(10): p. 104304.
19.Northrop, P.W.C., et al., Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks. Journal of the Electrochemical Society, 2011. 158(12): p. A1461-A1477.
20.Wagemaker, M., et al., Thermodynamics of spinel LixTiO2 from first principles. Chemical Physics, 2005. 317(2-3): p. 130-136.
21.Methekar, R.N., et al., Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation. Journal of the Electrochemical Society, 2011. 158(4): p. A363-A370.
22.Arora, P., R.E. White, and M. Doyle, Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of the Electrochemical Society, 1998. 145(10): p. 3647-3667.
23.Botte, G.G., V.R. Subramanian, and R.E. White, Mathematical modeling of secondary lithium batteries. Electrochimica Acta, 2000. 45(15-16): p. 2595-2609.
24.Gomadam, P.M., et al., Mathematical modeling of lithium-ion and nickel battery systems. Journal of Power Sources, 2002. 110(2): p. 267-284.
25.Schalkwijk, W.A.v. and B. Scrosati, Advances in lithium-ion batteries. 2002, New York, NY: Kluwer Academic/Plenum Publishers.
26.Fuller, T.F., M. Doyle, and J. Newman, Simulation and Optimization of the Dual Lithium Ion Insertion Cell. Journal of the Electrochemical Society, 1994. 141(1): p. 1-10.
27.Doyle, M. and J. Newman, Modeling the Performance of Rechargeable Lithium-Based Cells - Design Correlations for Limiting Cases. Journal of Power Sources, 1995. 54(1): p. 46-51.
28.Doyle, M. and J. Newman, Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry, 1997. 27(7): p. 846-856.
29.Ramadass, P., et al., Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 2004. 151(2): p. A196-A203.
30.Sikha, G., B.N. Popov, and R.E. White, Effect of porosity on the capacity fade of a lithium-ion battery - Theory. Journal of the Electrochemical Society, 2004. 151(7): p. A1104-A1114.
31.Özisik, N., Boundary Value Problems of Heat Conduction. 2002: Dover Publications.
32.Wang, C.Y., W.B. Gu, and B.Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells - I. Model development. Journal of the Electrochemical Society, 1998. 145(10): p. 3407-3417.
33.Subramanian, V.R., D. Tapriyal, and R.E. White, A boundary condition for porous electrodes. Electrochemical and Solid State Letters, 2004. 7(9): p. A259-A263.
34.Haran, B.S., B.N. Popov, and R.E. White, Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. Journal of Power Sources, 1998. 75(1): p. 56-63.
35.Ning, G. and B.N. Popov, Cycle life modeling of lithium-ion batteries. Journal of the Electrochemical Society, 2004. 151(10): p. A1584-A1591.
36.Subramanian, V.R., J.A. Ritter, and R.E. White, Approximate solutions for galvanostatic discharge of spherical particles - I. Constant diffusion coefficient. Journal of the Electrochemical Society, 2001. 148(11): p. E444-E449.
37.Ramadass, P. 2003, University of South Carolina.
38.Verbrugge, M.W. and B.J. Koch, Modeling lithium intercalation of single-fiber carbon microelectrodes. Journal of the Electrochemical Society, 1996. 143(2): p. 600-608.
39.Verbrugge, M.W., Convective Diffusion to a Rotating-Disk. Journal of the Electrochemical Society, 1992. 139(12): p. 3529-3535.
40.Adanuvor, P.K. and R.E. White, Analysis of Electrokinetic Data by Parameter-Estimation and Model Discrimination Techniques. Journal of the Electrochemical Society, 1988. 135(8): p. 1887-1898.
41.OZISIK, N., Boundary Value Problems of Heat Conduction. 1968.
42.吳光耀, 鋰離子電池之極限放電速率的模擬研究 =:Mathematical modeling of limiting discharge rate in lithium-ion battery. 2010.
43.林群耀, 鋰電池巨觀與微觀雙尺度數學模擬 =:The macroscopic and microscopic modeling of lithium-ion batteries ; coupled porous electrode/intercalation model. 2010.
44.Rusli, E., et al., Effect of additives on shape evolution during electrodeposition - II. Parameter estimation from roughness evolution experiments. Journal of the Electrochemical Society, 2007. 154(11): p. D584-D597.
45.Rusli, E., et al., Robust nonlinear feedback-feedforward control of a coupled kinetic Monte Carlo-finite difference simulation. Journal of Process Control, 2006. 16(4): p. 409-417.
46.Qin, Y., et al., Effect of additives on shape evolution during electrodeposition - III. Trench infill for on-chio interconnects. Journal of the Electrochemical Society, 2008. 155(3): p. D223-D233.
47.Li, X.H., et al., Effect of additives on shape evolution during electrodeposition I. Multiscale simulation with dynamically coupled kinetic Monte Carlo and moving-boundry finite-volume codes. Journal of the Electrochemical Society, 2007. 154(4): p. D230-D240.
48.Li, X.H., et al., Effect of additives on shape evolution during electrodeposition: I. Multiscale simulation with dynamically coupled kinetic Monte Carlo and moving-boundary finite-volume codes (vol 154, pg D230, 2007). Journal of the Electrochemical Society, 2007. 154(7): p. S15-S15.
49.Drews, T.O., et al., Coupled mesoscale - Continuum simulations of copper electrodeposition in a trench. Aiche Journal, 2004. 50(1): p. 226-240.
50.Drews, T.O., et al., Multiscale simulations of copper electrodeposition onto a resistive substrate. Ibm Journal of Research and Development, 2005. 49(1): p. 49-63.
51.Drews, T.O., R.D. Braatz, and R.C. Alkire, Coarse-Grained Kinetic Monte Carlo Simulation of Copper Electrodeposition with Additives. International Journal for Multiscale Computational Engineering, 2004. 2(2): p. 313-327.
52.Drews, T.O., R.D. Braatz, and R.C. Alkire, Parameter sensitivity analysis of Monte Carlo simulations of copper electrodeposition with multiple additives. Journal of the Electrochemical Society, 2003. 150(11): p. C807-C812.
53.Braatz, R.D., et al., A multiscale systems approach to microelectronic processes. Computers & Chemical Engineering, 2006. 30(10-12): p. 1643-1656.
54.Braatz, R.D., et al., Perspectives on the design and control of multiscale systems. Journal of Process Control, 2006. 16(3): p. 193-204.
55.Singer, A.B. and P.I. Barton, Global optimization with nonlinear ordinary differential equations. Journal of Global Optimization, 2006. 34(2): p. 159-190.
56.Chachuat, B., A.B. Singer, and P.I. Barton, Global methods for dynamic optimization and mixed-integer dynamic optimization. Industrial & Engineering Chemistry Research, 2006. 45(25): p. 8373-8392.
57.Newman, J.S., Electrochemical systems. 1991, Englewood Cliffs, N.J.: Prentice Hall.
58.Doyle, C.M., Design and simulation of lithium rechargeable batteries, in Other Information: PBD: Aug 1995. 1995. p. Medium: ED; Size: 370 p.
59.Newman, J., D. Bennion, and C.W. Tobias, Mass Transfer in Concentrated Binary Electrolytes. Berichte Der Bunsen-Gesellschaft Fur Physikalische Chemie, 1965. 69(7): p. 608-&.
60.Newman, J. and T.W. Chapman, Restricted Diffusion in Binary-Solutions. Aiche Journal, 1973. 19(2): p. 343-348.
61.Newman, J.S. and K.E. Thomas-Alyea, Electrochemical systems. 2004, Hoboken, N.J.: J. Wiley.
62.Ma, Y., et al., The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution. Journal of the Electrochemical Society, 1995. 142(6): p. 1859-1868.
63.Dunning, J.S., Analysis of porous electrodes with sparingly soluble reactants. 1971.
64.Satterfield, C.N. and T.K. Sherwood, The role of diffusion in catalysis. 1963: Addison-Wesley Pub. Co.
65.Advances in electrochemistry and electrochemical engineering. 1984, New York: Wiley.
66.Bruggeman, D.A.G., Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik, 1935. 24(7): p. 636-664.
67.West, K., T. Jacobsen, and S. Atlung, Modeling of Porous Insertion Electrodes with Liquid Electrolyte. Journal of the Electrochemical Society, 1982. 129(7): p. 1480-1485.
68.Botte, G.G. and R.E. White, Modeling lithium intercalation in a porous carbon electrode. Journal of the Electrochemical Society, 2001. 148(1): p. A54-A66.
69.Piller, S., M. Perrin, and A. Jossen, Methods for state-of-charge determination and their applications. Journal of Power Sources, 2001. 96(1): p. 113-120.
70.Guo, Q.Z. and R.E. White, Cubic spline regression for the open-circuit potential curves of a lithium-ion battery. Journal of the Electrochemical Society, 2005. 152(2): p. A343-A350.
71.Chen, Y.-P., State-of-Charge Estimations for Lead-Acid and Lithium-Ion Batteries. 2007.
72.Flaherty, J.E., Finite element analysis. 2000, Rensselaer Polytechnic Institute: New York. p. 323.
73.Wikipedia, the free encyclopedia. 2001; Available from: http://en.wikipedia.org/wiki/Main_Page.
74.徐祥耀, 碳塗佈於矽粒子負極材料之鋰離子電池巨觀與微觀數學模擬=:The macroscopic and microscopic simulation of the carbon-coated Si anode lithium-ion batteries. 2013.
75.GP-CR2032. [cited 2013 3/22]; Available from: http://akizukidenshi.com/download/GP-CR2032.pdf.
76.Celgard® 2325 Microporous Trilayer Membrane (PP/PE/PP). 2012, Celgard: U.S.A.
77.Stewart, S.G. and J. Newman, The Use of UV/vis Absorption to Measure Diffusion Coefficients in LiPF[sub 6] Electrolytic Solutions. Journal of the Electrochemical Society, 2008. 155(1): p. F13.
78.Electrolyte Solution JM-01 2011, Targray: Canada.
79.COMSOL website. [cited 2013 January]; Available from: http://www.comsol.com.
80.Chang, Y., Kinetic and Interfacial Characterization of Lithium Electrodes in Organic Electrolyte Solutions. 2004.
81.Zugmann, S., et al., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 2011. 56(11): p. 3926-3933.
82.闕帝強, 鋰電池碳-矽複合負極材料與含石墨鍍銀導電膠研究. 2014.
83.Zhang, X.C., W. Shyy, and A.M. Sastry, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of the Electrochemical Society, 2007. 154(10): p. A910-A916.
84.V.A. Sethuraman, M.J.C., b, Maxwell Shimshak, Venkat Srinivasan, Pradeep R. Gudurub, Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation Journal of Power Sources, 2010. 15(195): p. 5062-5066.
85.Tritsaris GA, Z.K., Okeke OU, Kaxiras E., Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study. Journal of Physical Chemistry C, 2012(166): p. 22212-22216.
86.Symposium on Fundamental Understanding of Electrode Processes in Memory of Professor Ernest B. Yeager, P.J.Y.E.B.E.S.E.T.D.E.S.P.E.D.E. Fundamental understanding of electrode processes in memory of Professor Ernest B. Yeager : proceedings of the international symposium. Pennington, NJ: Electrochemical Society.
87.Reimers, L.O.V.J.N., Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes. Journal of The Electrochemical Society, 2005. 152(5): p. A882-A891.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top