|
1.Shriram Santhanagopalan, Q.G., Premanand Ramadass, Ralph E. White, Review of models for predicting the cycling performance of lithium ion batteries. Journal of Power Sources, 2006. 156(2): p. 620-628. 2.Whittingham, M.S., Electrical Energy-Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127. 3.K. Mizushima, P.C.J., P. J. Wiseman, J. B. Goodenough, A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789. 4.Thackeray, M.M.D., W. I. F.; Bruce, P. G.; Goodenough, J. B, Lithium insertion into manganese spinels. . Materials Research Bulletin, 1983. 18(4): p. 461. 5.Nazri, G.a.P., Gianfranco, Lithium batteries: science and Technology. 2004. 6.Voelcker, J., Lithium Batteries Take to the Road. IEEE Spectrum, 2010. 7.Manthiram, A.G., J. B. , Lithium insertion into Fe2(SO4)3 frameworks. Journal of Power Sources, 1989. 26(3-4): p. 403. 8.Padhi, A.K., Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. . Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1110. 9.Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657. 10.Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367. 11.Ramadesigan, V., et al., Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective. Journal of the Electrochemical Society, 2012. 159(3): p. R31. 12.Newman, J., et al., Modeling of lithium-ion batteries. Journal of Power Sources, 2003. 119: p. 838-843. 13.Shishko, R., et al., NASA systems engineering handbook. 1995, [Washington, D.C.?]: National Aeronautics and Space Administration. 14.Doyle, M., T.F. Fuller, and J. Newman, Modeling of Galvanostatic Charge and Discharge of the Lithium Polymer Insertion Cell. Journal of the Electrochemical Society, 1993. 140(6): p. 1526-1533. 15.Van der Ven, A., et al., Nondilute diffusion from first principles: Li diffusion in Li(x)TiS(2). Physical Review B, 2008. 78(10). 16.Van der Ven, A. and G. Ceder, Lithium diffusion in layered LixCoO2. Electrochemical and Solid State Letters, 2000. 3(7): p. 301-304. 17.Bortz, A.B., M.H. Kalos, and J.L. Lebowitz, New Algorithm for Monte-Carlo Simulation of Ising Spin Systems. Journal of Computational Physics, 1975. 17(1): p. 10-18. 18.Bhattacharya, J. and A. Van der Ven, Phase stability and nondilute Li diffusion in spinel Li_{1+x}Ti_{2}O_{4}. Physical Review B, 2010. 81(10): p. 104304. 19.Northrop, P.W.C., et al., Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks. Journal of the Electrochemical Society, 2011. 158(12): p. A1461-A1477. 20.Wagemaker, M., et al., Thermodynamics of spinel LixTiO2 from first principles. Chemical Physics, 2005. 317(2-3): p. 130-136. 21.Methekar, R.N., et al., Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation. Journal of the Electrochemical Society, 2011. 158(4): p. A363-A370. 22.Arora, P., R.E. White, and M. Doyle, Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of the Electrochemical Society, 1998. 145(10): p. 3647-3667. 23.Botte, G.G., V.R. Subramanian, and R.E. White, Mathematical modeling of secondary lithium batteries. Electrochimica Acta, 2000. 45(15-16): p. 2595-2609. 24.Gomadam, P.M., et al., Mathematical modeling of lithium-ion and nickel battery systems. Journal of Power Sources, 2002. 110(2): p. 267-284. 25.Schalkwijk, W.A.v. and B. Scrosati, Advances in lithium-ion batteries. 2002, New York, NY: Kluwer Academic/Plenum Publishers. 26.Fuller, T.F., M. Doyle, and J. Newman, Simulation and Optimization of the Dual Lithium Ion Insertion Cell. Journal of the Electrochemical Society, 1994. 141(1): p. 1-10. 27.Doyle, M. and J. Newman, Modeling the Performance of Rechargeable Lithium-Based Cells - Design Correlations for Limiting Cases. Journal of Power Sources, 1995. 54(1): p. 46-51. 28.Doyle, M. and J. Newman, Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry, 1997. 27(7): p. 846-856. 29.Ramadass, P., et al., Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 2004. 151(2): p. A196-A203. 30.Sikha, G., B.N. Popov, and R.E. White, Effect of porosity on the capacity fade of a lithium-ion battery - Theory. Journal of the Electrochemical Society, 2004. 151(7): p. A1104-A1114. 31.Özisik, N., Boundary Value Problems of Heat Conduction. 2002: Dover Publications. 32.Wang, C.Y., W.B. Gu, and B.Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells - I. Model development. Journal of the Electrochemical Society, 1998. 145(10): p. 3407-3417. 33.Subramanian, V.R., D. Tapriyal, and R.E. White, A boundary condition for porous electrodes. Electrochemical and Solid State Letters, 2004. 7(9): p. A259-A263. 34.Haran, B.S., B.N. Popov, and R.E. White, Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. Journal of Power Sources, 1998. 75(1): p. 56-63. 35.Ning, G. and B.N. Popov, Cycle life modeling of lithium-ion batteries. Journal of the Electrochemical Society, 2004. 151(10): p. A1584-A1591. 36.Subramanian, V.R., J.A. Ritter, and R.E. White, Approximate solutions for galvanostatic discharge of spherical particles - I. Constant diffusion coefficient. Journal of the Electrochemical Society, 2001. 148(11): p. E444-E449. 37.Ramadass, P. 2003, University of South Carolina. 38.Verbrugge, M.W. and B.J. Koch, Modeling lithium intercalation of single-fiber carbon microelectrodes. Journal of the Electrochemical Society, 1996. 143(2): p. 600-608. 39.Verbrugge, M.W., Convective Diffusion to a Rotating-Disk. Journal of the Electrochemical Society, 1992. 139(12): p. 3529-3535. 40.Adanuvor, P.K. and R.E. White, Analysis of Electrokinetic Data by Parameter-Estimation and Model Discrimination Techniques. Journal of the Electrochemical Society, 1988. 135(8): p. 1887-1898. 41.OZISIK, N., Boundary Value Problems of Heat Conduction. 1968. 42.吳光耀, 鋰離子電池之極限放電速率的模擬研究 =:Mathematical modeling of limiting discharge rate in lithium-ion battery. 2010. 43.林群耀, 鋰電池巨觀與微觀雙尺度數學模擬 =:The macroscopic and microscopic modeling of lithium-ion batteries ; coupled porous electrode/intercalation model. 2010. 44.Rusli, E., et al., Effect of additives on shape evolution during electrodeposition - II. Parameter estimation from roughness evolution experiments. Journal of the Electrochemical Society, 2007. 154(11): p. D584-D597. 45.Rusli, E., et al., Robust nonlinear feedback-feedforward control of a coupled kinetic Monte Carlo-finite difference simulation. Journal of Process Control, 2006. 16(4): p. 409-417. 46.Qin, Y., et al., Effect of additives on shape evolution during electrodeposition - III. Trench infill for on-chio interconnects. Journal of the Electrochemical Society, 2008. 155(3): p. D223-D233. 47.Li, X.H., et al., Effect of additives on shape evolution during electrodeposition I. Multiscale simulation with dynamically coupled kinetic Monte Carlo and moving-boundry finite-volume codes. Journal of the Electrochemical Society, 2007. 154(4): p. D230-D240. 48.Li, X.H., et al., Effect of additives on shape evolution during electrodeposition: I. Multiscale simulation with dynamically coupled kinetic Monte Carlo and moving-boundary finite-volume codes (vol 154, pg D230, 2007). Journal of the Electrochemical Society, 2007. 154(7): p. S15-S15. 49.Drews, T.O., et al., Coupled mesoscale - Continuum simulations of copper electrodeposition in a trench. Aiche Journal, 2004. 50(1): p. 226-240. 50.Drews, T.O., et al., Multiscale simulations of copper electrodeposition onto a resistive substrate. Ibm Journal of Research and Development, 2005. 49(1): p. 49-63. 51.Drews, T.O., R.D. Braatz, and R.C. Alkire, Coarse-Grained Kinetic Monte Carlo Simulation of Copper Electrodeposition with Additives. International Journal for Multiscale Computational Engineering, 2004. 2(2): p. 313-327. 52.Drews, T.O., R.D. Braatz, and R.C. Alkire, Parameter sensitivity analysis of Monte Carlo simulations of copper electrodeposition with multiple additives. Journal of the Electrochemical Society, 2003. 150(11): p. C807-C812. 53.Braatz, R.D., et al., A multiscale systems approach to microelectronic processes. Computers & Chemical Engineering, 2006. 30(10-12): p. 1643-1656. 54.Braatz, R.D., et al., Perspectives on the design and control of multiscale systems. Journal of Process Control, 2006. 16(3): p. 193-204. 55.Singer, A.B. and P.I. Barton, Global optimization with nonlinear ordinary differential equations. Journal of Global Optimization, 2006. 34(2): p. 159-190. 56.Chachuat, B., A.B. Singer, and P.I. Barton, Global methods for dynamic optimization and mixed-integer dynamic optimization. Industrial & Engineering Chemistry Research, 2006. 45(25): p. 8373-8392. 57.Newman, J.S., Electrochemical systems. 1991, Englewood Cliffs, N.J.: Prentice Hall. 58.Doyle, C.M., Design and simulation of lithium rechargeable batteries, in Other Information: PBD: Aug 1995. 1995. p. Medium: ED; Size: 370 p. 59.Newman, J., D. Bennion, and C.W. Tobias, Mass Transfer in Concentrated Binary Electrolytes. Berichte Der Bunsen-Gesellschaft Fur Physikalische Chemie, 1965. 69(7): p. 608-&. 60.Newman, J. and T.W. Chapman, Restricted Diffusion in Binary-Solutions. Aiche Journal, 1973. 19(2): p. 343-348. 61.Newman, J.S. and K.E. Thomas-Alyea, Electrochemical systems. 2004, Hoboken, N.J.: J. Wiley. 62.Ma, Y., et al., The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution. Journal of the Electrochemical Society, 1995. 142(6): p. 1859-1868. 63.Dunning, J.S., Analysis of porous electrodes with sparingly soluble reactants. 1971. 64.Satterfield, C.N. and T.K. Sherwood, The role of diffusion in catalysis. 1963: Addison-Wesley Pub. Co. 65.Advances in electrochemistry and electrochemical engineering. 1984, New York: Wiley. 66.Bruggeman, D.A.G., Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik, 1935. 24(7): p. 636-664. 67.West, K., T. Jacobsen, and S. Atlung, Modeling of Porous Insertion Electrodes with Liquid Electrolyte. Journal of the Electrochemical Society, 1982. 129(7): p. 1480-1485. 68.Botte, G.G. and R.E. White, Modeling lithium intercalation in a porous carbon electrode. Journal of the Electrochemical Society, 2001. 148(1): p. A54-A66. 69.Piller, S., M. Perrin, and A. Jossen, Methods for state-of-charge determination and their applications. Journal of Power Sources, 2001. 96(1): p. 113-120. 70.Guo, Q.Z. and R.E. White, Cubic spline regression for the open-circuit potential curves of a lithium-ion battery. Journal of the Electrochemical Society, 2005. 152(2): p. A343-A350. 71.Chen, Y.-P., State-of-Charge Estimations for Lead-Acid and Lithium-Ion Batteries. 2007. 72.Flaherty, J.E., Finite element analysis. 2000, Rensselaer Polytechnic Institute: New York. p. 323. 73.Wikipedia, the free encyclopedia. 2001; Available from: http://en.wikipedia.org/wiki/Main_Page. 74.徐祥耀, 碳塗佈於矽粒子負極材料之鋰離子電池巨觀與微觀數學模擬=:The macroscopic and microscopic simulation of the carbon-coated Si anode lithium-ion batteries. 2013. 75.GP-CR2032. [cited 2013 3/22]; Available from: http://akizukidenshi.com/download/GP-CR2032.pdf. 76.Celgard® 2325 Microporous Trilayer Membrane (PP/PE/PP). 2012, Celgard: U.S.A. 77.Stewart, S.G. and J. Newman, The Use of UV/vis Absorption to Measure Diffusion Coefficients in LiPF[sub 6] Electrolytic Solutions. Journal of the Electrochemical Society, 2008. 155(1): p. F13. 78.Electrolyte Solution JM-01 2011, Targray: Canada. 79.COMSOL website. [cited 2013 January]; Available from: http://www.comsol.com. 80.Chang, Y., Kinetic and Interfacial Characterization of Lithium Electrodes in Organic Electrolyte Solutions. 2004. 81.Zugmann, S., et al., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 2011. 56(11): p. 3926-3933. 82.闕帝強, 鋰電池碳-矽複合負極材料與含石墨鍍銀導電膠研究. 2014. 83.Zhang, X.C., W. Shyy, and A.M. Sastry, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of the Electrochemical Society, 2007. 154(10): p. A910-A916. 84.V.A. Sethuraman, M.J.C., b, Maxwell Shimshak, Venkat Srinivasan, Pradeep R. Gudurub, Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation Journal of Power Sources, 2010. 15(195): p. 5062-5066. 85.Tritsaris GA, Z.K., Okeke OU, Kaxiras E., Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study. Journal of Physical Chemistry C, 2012(166): p. 22212-22216. 86.Symposium on Fundamental Understanding of Electrode Processes in Memory of Professor Ernest B. Yeager, P.J.Y.E.B.E.S.E.T.D.E.S.P.E.D.E. Fundamental understanding of electrode processes in memory of Professor Ernest B. Yeager : proceedings of the international symposium. Pennington, NJ: Electrochemical Society. 87.Reimers, L.O.V.J.N., Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes. Journal of The Electrochemical Society, 2005. 152(5): p. A882-A891.
|