|
1.Kvenvolden, K.A., Gas hydrates-geological perspective and global change. Reviews of Geophysics-Richmond Virginia Then Washington-, 1993. 31: p. 173-173. 2.Dickens, G.R., C. Paull, and P. Wallace, Direct measurement of in situ methane quantities in a large gas hydrate reservoir. Nature, 1997. 385: p. 426-428. 3.Haq, B.U., Natural gas deposits - Methane in the deep blue sea. Science, 1999. 285(5427): p. 543-544. 4.Mao, Z. and S.B. Sinnott, Separation of organic molecular mixtures in carbon nanotubes and bundles: molecular dynamics simulations. The Journal of Physical Chemistry B, 2001. 105(29): p. 6916-6924. 5.Strobel, T.A. et al., Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chemical Physics Letters, 2009. 478(4): p. 97-109. 6.Sloan, E.D., Clathrate Hydrate of Natural Gases: Revised and Expanded. 1998. 7.Chatti, I., et al., Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management, 2005. 46(9-10): p. 1333-1343. 8.Davies, S.R., et al., Hydrate plug dissociation. AICHhE Journal, 2006. 52(12): p. 4016-4027. 9.Panter, J.L., et al., Hydrate Plug Dissociation via Nitrogen Purge: Experiments and Modeling. Energy & Fuels, 2011. 25(6): p. 2572-2578. 10.Dickens, G.R., C.K. Paull, and P. Wallace, Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 1997. 385(6615): p. 426-428. 11.Gornitz, V. and I. Fung, Potential Distribution Of Methane Hydrates In The Worlds Oceans. Global Biogeochemical Cycles, 1994. 8(3): p. 335-347. 12.Kvenvolden, K.A., GAS Hydrates - Geological Perspective And Global Change. Reviews of Geophysics, 1993. 31(2): p. 173-187. 13.Sloan Jr, E.D. and C. Koh, Clathrate hydrates of natural gases. 2007: CRC press. 14.Boswell, R. and T.S. Collett, Current perspectives on gas hydrate resources. Energy & environmental science, 2011. 4(4): p. 1206-1215. 15.Kuuskraa, V., S.H. Stevens, and K.D. Moodhe, Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States. 2013. 16.Chen, L., et al., Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan. Journal of Asian Earth Sciences, 2014. 92: p. 245-253. 17.Gbaruko, B.C., et al., Gas hydrates and clathrates: Flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. Journal of Petroleum Science and Engineering, 2007. 56(1-3): p. 192-198. 18.Chapoy, A., R. Anderson, and B. Tohidi, Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. Journal of the American Chemical Society, 2007. 129(4): p. 746-747. 19.Kim, D.-Y., Y. Park, and H. Lee, Tuning clathrate hydrates: Application to hydrogen storage. Catalysis Today, 2007. 120(3-4): p. 257-261. 20.Prasad, P.S.R., Y. Sowjanya, and K.S. Prasad, Micro-Raman investigations of mixed gas hydrates. Vibrational Spectroscopy, 2009. 50(2): p. 319-323. 21.Sugahara, T. et al., Increasing Hydrogen Storage Capacity Using Tetrahydrofuran. Journal of the American Chemical Society, 2009. 131(41): p. 14616-14617. 22.Ogata, K. et al., Hydrogen storage in trimethylamine hydrate: Thermodynamic stability and hydrogen storage capacity of hydrogen plus trimethylamine mixed semi-clathrate hydrate. Chemical Engineering Science, 2010. 65(5): p. 1616-1620. 23.Nakata, T., K. Hirai, and T. Takaoki, Study of natural gas hydrate (NGH) carriers, in Proceedings of the 6th International conference on Gas Hydrates. 2008: Vancouver, British Columbia, Canada. 24.Koh, D.-Y., et al., Energy-efficient natural gas hydrate production using gas exchange. Applied Energy, 2016. 162: p. 114-130. 25.Schoderbek, D. and R. Boswell, Iġnik Sikumi# 1, Gas Hydrate Test Well, Successfully Installed on the Alaska North Slope. Natural Gas & Oil, 2011. 304: p. 285-4541. 26.Lee, H., et al., Recovering methane from solid methane hydrate with carbon dioxide. Angewandte Chemie International Edition, 2003. 42(41): p. 5048-5051. 27.Boswell, R., Japan completes first offshore methane hydrate production test—Methane successfully produced from deepwater hydrate layers. Center for Natural Gas and Oil, 2013. 412: p. 386-7614. 28.Komai, T., Y. Yamamoto, and K. Ohga, Dynamics of reformation and replacement of CO2 and CH4 gas hydrates. Annals of the New York Academy of Sciences, 2000. 912(1): p. 272-280. 29.Ota, M., et al., Macro and microscopic CH4–CO2 replacement in CH4 hydrate under pressurized CO2. AIChE Journal, 2007. 53(10): p. 2715-2721. 30.Hancock, S., et al., Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Bulletin-Geological Survey Of Canada, 2005. 585: p. 135. 31.Tung, Y.-T., et al., In situ methane recovery and carbon dioxide sequestration in methane hydrates: a molecular dynamics simulation study. The Journal of Physical Chemistry B, 2011. 115(51): p. 15295-15302. 32.Yoon, J.-H., et al., Transformation of methane hydrate to carbon dioxide hydrate: in situ Raman spectroscopic observations. The Journal of Physical Chemistry A, 2004. 108(23): p. 5057-5059. 33.Ota, M., et al., Replacement of CH4 in the hydrate by use of liquid CO 2. Energy Conversion and Management, 2005. 46(11): p. 1680-1691. 34.Bigalke, N.K., et al., CO2 injection into submarine sediments: disturbing news for methane-rich hydrates. 2011. 35.Yuan, Q., et al., Replacement of Methane from Hydrates in Porous Sediments with CO2-in-Water Emulsions. Industrial & Engineering Chemistry Research, 2014. 53(31): p. 12476-12484. 36.Deusner, C., et al., Methane production from gas hydrate deposits through injection of supercritical CO2. Energies, 2012. 5(7): p. 2112-2140. 37.Geng, C.-Y., H. Wen, and H. Zhou, Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2. The Journal of Physical Chemistry A, 2009. 113(18): p. 5463-5469. 38.Qi, Y., M. Ota, and H. Zhang, Molecular dynamics simulation of replacement of CH4 in hydrate with CO2. Energy Conversion and Management, 2011. 52(7): p. 2682-2687. 39.Bai, D., et al., Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations. Energy & Environmental Science, 2012. 5(5): p. 7033-7041. 40.Demurov, A., R. Radhakrishnan, and B.L. Trout, Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. Journal of Chemical Physics, 2002. 116(2): p. 702-709. 41.Peters, B., et al., Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. Journal of the American Chemical Society, 2008. 130(51): p. 17342-17350. 42.Falenty, A., A. Salamatin, and W. Kuhs, Kinetics of CO2-hydrate formation from ice powders: data summary and modeling extended to low temperatures. The Journal of Physical Chemistry C, 2013. 117(16): p. 8443-8457. 43.Hockney, R.W., S.P. Goel, and J.W. Eastwood, 10000 Particle Molecular Dynamics Model with Long-Range Forces. Chemical Physics Letters, 1973. 21(3): p. 589-591. 44.Verlet, L., Computer Experiments On Classical Fluids .I. Thermodynamical Properties Of Lennard-Jones Molecules. Physical Review, 1967. 159(1): p. 98-&. 45.Toukmaji, A.Y. and J.A. Board Jr, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92. 46.Kittel, C.H.K., Thermal Physics, 2nd 1980, San Francisco: W.H. Freeman and Company. P 31. 47.Landau, L.D.L., E.M., Statistical Physics. Pergamon Press. 1980. 48.Hoover, W.G., Canonical Dynamics - Equilibrium Phase-Space Distributions. Physical Review A, 1985. 31(3): p. 1695-1697. 49.Berendsen, H.J.C., et al., Molecular-Dynamics With Coupling To An External Bath. Journal of Chemical Physics, 1984. 81(8): p. 3684-3690. 50.Berendsen, H.J.C., Transport Properties Computed by Linear Response through Weak Coupling to a Bath, in Computer Simulation in Materials Science, M. Meyer and V. Pontikis, Editors. 1991, Springer Netherlands. p. 139-155. 51.Parrinello, M. and A. Rahman, Polymorphic Transitions In Single-Crystals - A New Molecular-Dynamics Method. Journal of Applied Physics, 1981. 52(12): p. 7182-7190. 52.Module, F., Materials Studio 6.0. Accelrys Inc., San Diego, CA, 2011. 53.Bernal, J. and R. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1933. 1(8): p. 515-548. 54.Sum, A.K., R.C. Burruss, and E.D. Sloan, Measurement of clathrate hydrates via Raman spectroscopy. The Journal of Physical Chemistry B, 1997. 101(38): p. 7371-7377. 55.Hess, B., et al., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of chemical theory and computation, 2008. 4(3): p. 435-447. 56.Abascal, J., et al., A potential model for the study of ices and amorphous water: TIP4P/Ice. The Journal of chemical physics, 2005. 122: p. 234511. 57.Kaminski, G.A., et al., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 2001. 105(28): p. 6474-6487. 58.Harris, J.G. and K.H. Yung, Carbon dioxide''s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. The Journal of Physical Chemistry, 1995. 99(31): p. 12021-12024. 59.Chao, H.-I. and S.-T. Lin, Exploring Self-Preservation in Methane Hydrate Dissociation via Molecular Dynamics Simulation. 2015. 60.Luzar, A. and D. Chandler, Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. The Journal of chemical physics, 1993. 98(10): p. 8160-8173. 61.Wu, J.-Y. and S.-T. Lin, Influence of the Additive Tetrahydrofuran on the Growth and Nucleation of Methane Hydrate via Molecular Dynamics Simulations. 2015, National Taiwan University. p. 35-37.
|