(3.238.249.17) 您好!臺灣時間:2021/04/13 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李效丞
研究生(外文):Hsiao-Chen Li
論文名稱:金觸媒在低溫水氣轉移反應上的應用
論文名稱(外文):Gold Catalyst for Low Temperature Water-Gas Shift Reaction
指導教授:萬本儒
口試委員:鄭淑芬吳紀聖林昇佃
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:117
中文關鍵詞:低溫水氣轉移反應金觸媒二氧化鈰二氧化鈦前處理穩定性
外文關鍵詞:low temperature water-gas shift reactiongold catalystCeO2TiO2pretreatmentstability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由沉積沉澱程序將奈米金擔載於金屬氧化物CeO2與TiO2上,應用於低溫水氣轉移反應(200 oC),期望製備出具備高催化活性與穩定性之觸媒,探討的變因包含: (1) 製備程序的調整;(2) 擔體的選擇;(3) 前處理效應;(4) 水量對反應的影響。觸媒相關物化性質是由HRTEM、FTIR、XPS、TPR、AA與BET等儀器鑑定。
有關Au/CeO2研究,前處理效應顯示還原性氣體處理後的催化活性優於非還原性處理,且使用CO比H2更佳。由儀器鑑定可知還原性處理可使擔體表面傾向還原態、增加反應活性基;其中使用CO前處理可產生最多的氧空缺,似乎顯示Au/CeO2擔體上的氧空缺比金量更能影響催活性。另外,水量的多寡不僅會影響催化活性,同時也會影響穩定性;在使用可產生高純度氫氣的甲烷蒸汽進料時水量達20 mol%以上是較適之反應條件。探討沉積沉澱程序變因對製備觸媒影響時發現金溶液pH值( 6或 9)及CeO2是否經表面修飾,對金擔載量及Au/CeO2催化活性並無明顯影響。TPR研究結果顯示雖然CeO2經表面修飾會造成擔體的脫氧(被還原)能力明顯下降,但奈米金的存在能促使大部分CeO2在低溫脫氧,此時擔體表面缺陷造成的活性差異可被忽略。
有關Au/TiO2研究,前處理效應對催化活性不似Au/CeO2有明顯影響,但相同金含量下Au/TiO2的活性遠比Au/CeO2來的好。有關沉積沉澱程序變因對製備觸媒影響,增加金溶液pH值至9會減少金擔載量,但不會明顯改變單位金量之催化活性,因此就觸媒單位重量的催化活性而言,以pH6製備的Au/TiO2具高活性,是本研究中最佳的金觸媒。
本研究選用活性最佳的Au/TiO2(pH6)觸媒,在文獻反應條件下與各觸媒進行比較,發現其活性都比文獻結果來得高,且十分穩定、不受反應組成或溫度變化影響。因此,未來發展應以TiO2做為擔體,進行後續研究。


The main goal of this reseach is to prepare a gold catalyst with good activity and stability for low temperature water-gas shift reaction (WGS). The following effects on reaction activity were studied: (1) catalyst preparation methods; (2) choice of supports (CeO2 or TiO2); (3) catalyst pretreatment before WGS; (4) water amount during WGS. Moreover, the properties of the catalysts were investigated by using HRTEM, FTIR, XPS, TPR, AA and BET.
For nano-gold supported on CeO2 (i.e., Au/CeO2), the catalyst pretreated with reductive gas possessed much higher WGS activity than that with non-reductive gas, among which activity under CO is better than that under H2. Reductive pretreatments lead to larger amounts of metallic gold on the catalysts and oxygen vacancies in CeO2, which can be the reason for better activity preformances. Research work concerning the effect of water amounts revealed that the discrapencies in water amounts would affect both the activity and stability for WGSR. When the reactant gas with highest H2/CO ratio, derived from steam-methane reforming, was introduced into the reactor, the amount of water should be higher than 20 mol% to prevent the oscillation of activity. For the study of variables in deposition-precipitation method to prepare Au/CeO2, pH value of gold solutions and a prior modification of CeO2 caused little differences on the activity of gold catalysts. Desorption of surface oxygen from CeO2 became more difficult after the prior modification, thus lowered the activity. However, the presence of nanogold causes CeO2 to be reduced under low temperature, which could compensate the poor performance of modified CeO2.
For nano-gold supported on TiO2 (i.e., Au/TiO2), difference between pretreatments was less significant than that seen in Au/CeO2, but Au/TiO2 had much better activity than Au/CeO2 at 200 oC based on same gold amounts. The catalyst prepared at pH 9 had activity similar to that prepared at pH 6 per weight of gold, but possessed lower gold loading. Therefore, higher activity was obtained for Au/TiO2 prepared at pH 6 based on the same weight of total catalysts.
Finally, by testing in different reaction conditions, it was found that Au/TiO2(pH6) possessed higher activity than other catalysts reported in the literature. Moreover, it was stable in long-term activity test. In summary, Au/TiO2(pH6) is the most suitable one for practical uses and future study on this catalyst is required for better activity performances.


摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 X

第一章 緒論 1
1.1 研究背景 1
1.2 反應介紹 1
1.3 常用觸媒介紹 8
1.4 研究目標 11

第二章 文獻回顧 12
2.1 WGSR反應機制 12
2.2 影響金觸媒活性的因素 17
2.2.1 顆粒粒徑影響 17
2.2.2 擔體的選擇 18
2.2.3 金擔載量 21
2.2.4 製備方式 23
2.2.5 添加物的影響 27
2.2.6 反應條件 29
2.3 穩定性與觸媒再生 31
2.4 總結 37

第三章 實驗方法 38
3.1 觸媒製備 38
3.1.1 實驗藥品 38
3.1.2 實驗儀器 39
3.1.3 擔體製備 39
3.1.4 觸媒製備程序 39
3.2 反應測試 42
3.2.1 反應氣體 42
3.2.2 反應裝置 44
3.3 觸媒鑑定 48
3.3.1 原子吸收光譜 (AA) 48
3.3.2 比表面積與孔洞分佈測量儀 (Specific Surface Area Analyzer) 49
3.3.3 高解析穿透式電子顯微鏡 (HRTEM) 50
3.3.4 程溫還原系統 (H2-TPR) 50
3.3.5 傅立葉轉換紅外光譜儀 (FTIR) 50
3.3.6 X射線光電子光譜(XPS) 51
3.4 定義與理論計算 52
3.4.1 轉化率定義 52
3.4.2 平衡常數計算 53
3.4.3 理論平衡轉化率 55

第四章 結果與討論 58
4.1 Au/CeO2系列研究 58
4.1.1 在Au/CeO2上的前處理效應 58
4.1.2 水量對WGSR反應表現的影響 77
4.1.3 探討不同製程對Au/CeO2的影響 80
4.2 Au/TiO2系列研究 85
4.2.1 在Au/TiO2上的前處理效應 85
4.2.2 探討製程與擔體選擇 88
4.3 探討金觸媒的實用性 94
4.3.1 與工業用銅觸媒進行比較 94
4.3.2 仿文獻條件進行測試 95
4.3.3 Thermal cycle 100

第五章 結論 103

第六章 未來展望 105

第七章 參考文獻 106

第八章 附錄 反應系統設計對活性的影響 112
8.1 不同注水裝置的差異 112
8.2 反應裝置的影響 114



1.Song, C., Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today, 2002. 77(1–2): p. 17-49.
2.Ladebeck, J.R. and J.P. Wagner, Catalyst development for water-gas shift. Handbook of Fuel Cells – Fundamentals, Technology and Applications, 2003. 3: p. 190-201.
3.J, B.S.R., M. Loganathan, and M.S. Shantha, A Review of the Water Gas Shift Reaction Kinetics. International Journal of Chemical Reactor Engineering, 2010. 8(1).
4.Júnior, I.L., J.-M.M. Millet, M. Aouine, and M. do Carmo Rangel, The role of vanadium on the properties of iron based catalysts for the water gas shift reaction. Applied Catalysis A: General, 2005. 283(1–2): p. 91-98.
5.de Souza, J.M.T. and M. do Carmo Rangel, Aluminium-doped catalysts for the high temperature shift reaction. Reaction Kinetics and Catalysis Letters, 2002. 77(1): p. 29-34.
6.Gradisher, L., B. Dutcher, and M. Fan, Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Applied Energy, 2015. 139: p. 335-349.
7.Mendes, D., H. Garcia, V.B. Silva, A. Mendes, and L.M. Madeira, Comparison of Nanosized Gold-Based and Copper-Based Catalysts for the Low-Temperature Water−Gas Shift Reaction. Industrial & Engineering Chemistry Research, 2009. 48(1): p. 430-439.
8.Soria, M.A., P. Pérez, S.A.C. Carabineiro, F.J. Maldonado-Hódar, A. Mendes, and L.M. Madeira, Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water–gas shift reaction. Applied Catalysis A: General, 2014. 470: p. 45-55.
9.Tao, F.F. and Z. Ma, Water-gas shift on gold catalysts: catalyst systems and fundamental studies. Phys Chem Chem Phys, 2013. 15(37): p. 15260-70.
10.Sakurai, H., T. Akita, S. Tsubota, M. Kiuchi, and M. Haruta, Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction. Applied Catalysis A: General, 2005. 291(1-2): p. 179-187.
11.Haruta, M., N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 1989. 115(2): p. 301-309.
12.Haruta, M., S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, and B. Delmon, Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. Journal of Catalysis, 1993. 144(1): p. 175-192.
13.Andreeva, D., V. Idakiev, T. Tabakova, and A. Andreev, Low-Temperature Water–Gas Shift Reaction over Au/α-Fe2O3. Journal of Catalysis, 1996. 158(1): p. 354-355.
14.Tabakova, T., V. Idakiev, D. Andreeva, and I. Mitov, Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3–ZnO, Au/Fe2O3–ZrO2 catalysts for the WGS reaction. Applied Catalysis A: General, 2000. 202(1): p. 91-97.
15.Andreeva, D., Low temperature water gas shift over gold catalysts. Gold Bulletin, 2002. 35(3): p. 82-88.
16.Tabakova, T., F. Boccuzzi, M. Manzoli, J. Sobczak, V. Idakiev, and D. Andreeva, A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction. Applied Catalysis A: General, 2006. 298: p. 127-143.
17.Gonzalez Castaño, M., T.R. Reina, S. Ivanova, M.A. Centeno, and J.A. Odriozola, Pt vs. Au in water–gas shift reaction. Journal of Catalysis, 2014. 314: p. 1-9.
18.Kim, C. and L. Thompson, Deactivation of Au/CeOx water gas shift catalysts. Journal of Catalysis, 2005. 230(1): p. 66-74.
19.Karpenko, A., R. Leppelt, J. Cai, V. Plzak, A. Chuvilin, U. Kaiser, and R. Behm, Deactivation of a Au/CeO2 catalyst during the low-temperature water–gas shift reaction and its reactivation: A combined TEM, XRD, XPS, DRIFTS, and activity study. Journal of Catalysis, 2007. 250(1): p. 139-150.
20.Rhodes, C., G.J. Hutchings, and A.M. Ward, Recent Advances in C1 ChemistryWater-gas shift reaction: finding the mechanistic boundary. Catalysis Today, 1995. 23(1): p. 43-58.
21.Jacobs, G., S. Ricote, U.M. Graham, P.M. Patterson, and B.H. Davis, Low temperature water gas shift: Type and loading of metal impacts forward decomposition of pseudo-stabilized formate over metal/ceria catalysts. Catalysis Today, 2005. 106(1-4): p. 259-264.
22.Campbell, C.T., A surface science investigation of the Water gas shift reaction on Cu(111). J.Catal, 1987. 104: p. 109.
23.Denkwitz, Y., A. Karpenko, V. Plzak, R. Leppelt, B. Schumacher, and R. Behm, Influence of CO2 and H2 on the low-temperature water–gas shift reaction on Au/CeO2 catalysts in idealized and realistic reformate. Journal of Catalysis, 2007. 246(1): p. 74-90.
24.Leppelt, R., B. Schumacher, V. Plzak, M. Kinne, and R. Behm, Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. Journal of Catalysis, 2006. 244(2): p. 137-152.
25.Rodriguez, J.A., S.D. Senanayake, D. Stacchiola, P. Liu, and J. Hrbek, The Activation of Gold and the Water–Gas Shift Reaction: Insights from Studies with Model Catalysts. Accounts of Chemical Research, 2014. 47(3): p. 773-782.
26.Reina, T.R., S. Ivanova, M.A. Centeno, and J.A. Odriozola, Boosting the activity of a Au/CeO2/Al2O3 catalyst for the WGS reaction. Catalysis Today, 2015. 253: p. 149-154.
27.Fu, Q., W. Deng, H. Saltsburg, and M. Flytzani-Stephanopoulos, Activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction. Applied Catalysis B: Environmental, 2005. 56(1-2): p. 57-68.
28.Kim, C. and L. Thompson, On the importance of nanocrystalline gold for Au/CeO2 water–gas shift catalysts. Journal of Catalysis, 2006. 244(2): p. 248-250.
29.Bond, G.C. and D.T. Thompson, Gold-catalysed oxidation of carbon monoxide. Gold Bulletin, 2000. 33(2): p. 41-50.
30.Meunier, F., D. Reid, A. Goguet, S. Shekhtman, C. Hardacre, R. Burch, W. Deng, and M. Flytzanistephanopoulos, Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water–gas shift catalyst: First unambiguous evidence of the minority role of formates as reaction intermediates. Journal of Catalysis, 2007. 247(2): p. 277-287.
31.Burch, R., A. Goguet, and F.C. Meunier, A critical analysis of the experimental evidence for and against a formate mechanism for high activity water-gas shift catalysts. Applied Catalysis A: General, 2011. 409-410: p. 3-12.
32.Shekhar, M., J. Wang, W.S. Lee, W.D. Williams, S.M. Kim, E.A. Stach, J.T. Miller, W.N. Delgass, and F.H. Ribeiro, Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J Am Chem Soc, 2012. 134(10): p. 4700-8.
33.Fu, Q., A. Weber, and M. Flytzani-Stephanopoulos, Nanostructured Au–CeO2 Catalysts for Low-Temperature Water–Gas Shift. Catalysis Letters, 2001. 77(1): p. 87-95.
34.Zhang, C., H. He, and K.-i. Tanaka, Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2006. 65(1-2): p. 37-43.
35.Karpenko, A., Y. Denkwitz, V. Plzak, J. Cai, R. Leppelt, B. Schumacher, and R.J. Behm, Low-temperature water-gas shift reaction on Au/CeO2 catalysts – the influence of catalyst pre-treatment on the activity and deactivation in idealized reformate. Catalysis Letters, 2007. 116(3-4): p. 105-115.
36.El-Moemen, A.A., G. Kučerová, and R.J. Behm, Influence of H2, CO2 and H2O on the activity and deactivation behavior of Au/CeO2 catalysts in the water gas shift reaction at 300°C. Applied Catalysis B: Environmental, 2010. 95(1-2): p. 57-70.
37.Andreeva, D., V. Idakiev, T. Tabakova, A. Andreev, and R. Giovanoli, Low-temperature water-gas shift reaction on Auα-Fe2O3 catalyst. Applied Catalysis A: General, 1996. 134(2): p. 275-283.
38.Burch, R., Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Phys Chem Chem Phys, 2006. 8(47): p. 5483-500.
39.G. C. Bond, D.T.T., Catalysis by gold. Catal. Rev. Sci. Eng., 1999. 41: p. 319.
40.Haruta, M., Catalysis of Gold Nanoparticles Deposited on Metal Oxides. CATTECH, 2002. 6(3): p. 102-115.
41.M. Valden, X.L.a.D.W.G., Onset of catalytic activity of gold clusters on titania with appearance of nanometallic properties. Science, 1998. 281: p. 1647-1650.
42.G. Y. Cha, G.P., Surface reactivity of supported gold : I. Oxygen transfer between CO and CO2. J. Catal., 1970. 18: p. 200.
43.Shekhar, M., J. Wang, W.-S. Lee, M. Cem Akatay, E.A. Stach, W. Nicholas Delgass, and F.H. Ribeiro, Counting Au catalytic sites for the water–gas shift reaction. Journal of Catalysis, 2012. 293: p. 94-102.
44.Panagiotopoulou, P. and D.I. Kondarides, Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water–gas shift reaction. Journal of Catalysis, 2004. 225(2): p. 327-336.
45.Panagiotopoulou, P. and D.I. Kondarides, Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catalysis Today, 2006. 112(1–4): p. 49-52.
46.Srensen, O.T., Thermodynamic studies of the phase relationships of nonstoichiometric cerium oxides at higher temperatures. Journal of Solid State Chemistry, 1976. 18(3): p. 217-233.
47.Tschope, A., W. Liu, M. Flytzanistephanopoulos, and J.Y. Ying, Redox Activity of Nonstoichiometric Cerium Oxide-Based Nanocrystalline Catalysts. Journal of Catalysis, 1995. 157(1): p. 42-50.
48.Haruta, M., When gold is not noble: catalysis by nanoparticles. Chem. Record, 2003. 3: p. 75.
49.Sandoval, A., A. Gómez-Cortés, R. Zanella, G. Díaz, and J.M. Saniger, Gold nanoparticles: Support effects for the WGS reaction. Journal of Molecular Catalysis A: Chemical, 2007. 278(1-2): p. 200-208.
50.Andreeva, D., V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, and A. Travlos, Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catalysis Today, 2002. 72(1–2): p. 51-57.
51.Bond, G.C., Heterogeneous Catalysis. Oxford University Press. 1990, New York.
52.Qi, C., T. Akita, M. Okumura, K. Kuraoka, and M. Haruta, Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature. Applied Catalysis A: General, 2003. 253(1): p. 75-89.
53.Haruta, M., Copper, Silver and Gold in CatalysisSize- and support-dependency in the catalysis of gold. Catalysis Today, 1997. 36(1): p. 153-166.
54.劉詩婷, 製備Au/Y觸媒應用於0℃ CO氧化反應. 國立台灣大學化學工程學研究所碩士論文, 2008.
55.Moreau, F., G. Bond, and A. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents. Journal of Catalysis, 2005. 231(1): p. 105-114.
56.Geus, J.W., Production and Thermal Pretreatment of Supported Catalyst. Stud. Surf. Sci. Catal., 1983. 16: p. 1.
57.S. Tsubota, M.H., T. Kobayashi, A. Ueda, Y. Nakahara, Preparation of highly dispersed gold on titanium and magnesium oxide. Stud. Surf. Sci. Catal., 1991. 63.
58.Deng, W. and M. Flytzani-Stephanopoulos, On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. Angew Chem Int Ed Engl, 2006. 45(14): p. 2285-9.
59.Hinojosa-Reyes, M., V. Rodríguez-González, and R. Zanella, Gold nanoparticles supported on TiO2–Ni as catalysts for hydrogen purification via water–gas shift reaction. RSC Adv., 2014. 4(9): p. 4308-4316.
60.Andreeva, D., M. Kantcheva, I. Ivanov, L. Ilieva, J.W. Sobczak, and W. Lisowski, Gold supported on ceria doped by Me3+ (Me=Al and Sm) for water gas shift reaction: Influence of dopant and preparation method. Catalysis Today, 2010. 158(1-2): p. 69-77.
61.Bus, E., J.T. Miller, and J.A. van Bokhoven, Hydrogen Chemisorption on Al2O3-Supported Gold Catalysts. The Journal of Physical Chemistry B, 2005. 109(30): p. 14581-14587.
62.Liu, X., P. Guo, B. Wang, Z. Jiang, Y. Pei, K. Fan, and M. Qiao, A comparative study of the deactivation mechanisms of the Au/CeO2 catalyst for water–gas shift under steady-state and shutdown/start-up conditions in realistic reformate. Journal of Catalysis, 2013. 300: p. 152-162.
63.Avery, N.R., Reaction of HCOOH with a Pt(111)-O surface; identification of adsorbed monodentate formate. Applications of Surface Science, 1983. 14(2): p. 149-156.
64.Li, C., Y. Sakata, T. Arai, K. Domen, K.-i. Maruya, and T. Onishi, Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1.-Formation of carbonate species on dehydroxylated CeO2, at room temperature. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989. 85(4): p. 929-943.
65.Tabakova, T., F. Boccuzzi, M. Manzoli, and D. Andreeva, FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst. Applied Catalysis A: General, 2003. 252(2): p. 385-397.
66.蘇育正, Au/TiO2觸媒應用於水煤氣轉移反應與富氫氣體中選擇性氧化一氧化碳. 國立台灣大學化學工程學研究所碩士論文, 2007.
67.蔡雨彤, Au/CeO2觸媒在水氣轉移反應上的應用. 國立台灣大學化學工程學研究所碩士論文, 2007.
68.林延儒, Au/CeO2觸媒在水氣轉移反應上的應用. 國立台灣大學化學工程學研究所碩士論文, 2008.
69.高慈煒, Au/CeO2觸媒的鑑定及水氣轉移反應上的應用. 國立台灣大學化學工程學研究所碩士論文, 2009.
70.梁凱惠, 儲存環境(光、真空、容器)對Au/TiO2之影響. 國立台灣大學化學工程學研究所碩士論文, 2010.
71.游文岳, 以金/二氧化鈦觸媒催化富氫氣體中一氧化碳的選擇性氧化. 國立台灣大學化學工程研究所碩士論文, 2004.
72.R. C. Reid, J.M.P., T. K. Sherwood, The Properties of Gases and Liquids, 3rd ed., ed. McGraw-Hill. 1977, New York.
73.Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews, 1996. 38(4): p. 439-520.
74.Shido, T. and Y. Iwasawa, Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2. Journal of Catalysis, 1993. 141(1): p. 71-81.
75.Pan, X., M.Q. Yang, X. Fu, N. Zhang, and Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 2013. 5(9): p. 3601-14.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔