跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/18 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁祐恩
研究生(外文):Yu-En Liang
論文名稱:液滴潤濕行為之研究:曲率效應
論文名稱(外文):Curvature Effects on Drop Wetting
指導教授:諶玉真
口試委員:曹恆光林析右陳宣毅廖英志廖敦彥張峰明
口試日期:2016-08-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:112
中文關鍵詞:液滴潤溼接觸角barrelclam-shellSurface Evolver多體耗散粒子動力學液橋沾筆式奈米微影技術
外文關鍵詞:dropletwettingcontact anglebarrelclam-shellSurface EvolverMDPDliquid bridgedip-pen nanolithography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
潤溼現象經常出現在日常生活中,其相關研究在工業、 科學、微流體控制等應用上都有所助益。本文將探討液固面之曲率效應對潤溼行為的影響,分為下列四個部分:
(1)液滴潤溼在纖維上是常見的,而液滴潤溼於垂直纖維底部與平板交界面的行為,與沾筆式奈米微影技術習習相關。我們將結合數值模擬與實驗來探討液滴於纖維底部與平板交界面之平衡形態。當使用超疏水板時,液滴的平衡形態將呈現軸對稱的barrel 狀或不對稱的clam-shell。相對的,當使用親水板時,液滴的平衡形態將呈現軸對稱的bell-like狀或不對稱的half-bell-like狀。介於兩種形態之間,兩種形態可以共存,也表示了有多重穩定態。在這個研究中,藉由有限元素的數值模擬,建立出固定平板接觸角下,液滴體積對液滴與纖維之間的接觸角之相圖。我們建立了兩張相圖,其平板之接觸角分別為70°和165°。其相圖特徵在重力存在下,與液滴於纖維上在無重力存在的相圖相似。其存在著三種區域:單獨barrel(bell-like)、單獨clam-shell(half-bell-like)、與兩者共存。然而,在超疏水板,單獨clam-shell區相較之下是比較小的,是因為同狀態下barrel狀的重力位能較低。另一方面,在親水板,由於親水板使液滴傾向增加與板的接觸面積,使得單獨bell-like的區域主導整個相圖,相較之下共存區明顯的縮小。
(2)在研究圓柱體外圍的潤溼行為之後,液滴於圓柱體內(管內)的相態是我們所關心的。了解液滴於水平管內的相態將對於在毛細力主導時二相流於微流體裝置內的流動提供有用的資訊。液滴於管子內的系統可以和液滴在纖維上(圓柱體外)之系統有所類比。利用Surface Evolver數值模擬與實驗對照,我們一樣發現了兩種形態,adhered drop和liquid slug。Adhered drop傾向存在於小體積,而liquid slug傾向存在於大體積。介於兩者中間的體積時,兩種形態可共存。實驗的觀察與我們的模擬符合。藉由數值模擬,我們建立了液體在管內的體積對接觸角之相圖。其存在著三種區域:單獨adhered drop、單獨liquid slug、與兩者共存。在重力的存在之下,相較於無重力的狀況,adhered drop形態是較為傾向存在的。因此,相圖的共存區明顯上升。
(3)了解並控制液滴於錐狀纖維上的平衡位置與形態將對於沾筆式奈米微影技術提供有用的資訊。在這個研究,藉由Surface Evolver數值模擬,我們探討了液滴於垂直的錐狀纖維之平衡形態。相似於液滴於柱狀纖維之相態,我們得到了兩種形態(barrel狀與clam-shell狀)。在無重力的狀態下,液滴會一直往上(低曲率)的方向移動,並且隨著其上升,總表面能持續的下降。無論液滴模擬的初始狀態為何,向上移動著的液滴最終都會是clam-shell形態,並且沒有平衡位置。然而,在重力存在時,液滴將會停止移動在平衡位置。對於一個已知的接觸角,clam-shell傾向存在於小體積,而barrel傾向存在於大體積。在特定的體積區段,我們發現了兩者的共存態。在足夠大的體積下,液滴將掉落而不在系統中。
(4)最後,我們研究在一個錐和板之間的液橋的潤溼行為,其與沾筆式奈米微影技術更加相關。藉由Surface Evolver數值模擬、多體耗散粒子動力學法、與實驗,我們探討了於錐和板間的液橋形狀與其斷裂過程。取決於錐的幾何形狀(錐的張開角)、錐間與板的距離、與錐和板的潤溼性(接觸角),我們可以觀察到在斷裂前,有三種液橋形態,並且在斷裂後,錐和板之間競爭的結果會有兩種。有趣的是,在斷裂後,大部份的液橋體積不一定會留在較為親水的錐上。事實上,雖親水但尖銳的錐(錐的張開角小)在潤溼的競爭上經常會輸給疏水板。為了解釋我們的發現,錐之“表觀”接觸角的概念將被提出與介紹,並且我們也發現,在錐板之液橋系統與在兩平行板之間的液橋系統,根據這個概念,是可以類比的。


Wetting phenomenon is easily seen in our daily life. The research about wetting can provide useful information for industry, science, and microfluidics applications. In this dissertation, there are four major parts to investigate the effects of solid-liquid surfaces’ curvature on drop wetting.

For the first part, droplet-on-fiber is commonly seen and the drop at the bottom of a rigid fiber standing vertically on a flat surface is closely related to dip-pen nanolithography. A combined approach of numerical simulation and experimental observation is conducted to investigate the equilibrium shape of a drop-on-fiber/plane system. For superhydrophobic surfaces, the equilibrium geometrical shape of the drop adopts either axisymmetric barrel or asymmetric clam-shell conformation. In contrast, for hydrophilic surfaces, the equilibrium drop shape adopts either axisymmetric bell-like or asymmetric half-bell-like conformation. At the transition between the two conformations, both conformations can coexist and the multiple steady states are indicated. In this study, the phase diagrams of drop-on-fiber/plane, that is, the plots of droplet volume against liquid-fiber contact angle, are established on the basis of the finite-element simulation for liquid-plane contact angle 70° and 165°. The general features of phase diagrams for drop-on-fiber/plane systems in the presence of gravity are similar to those of drop-on-fiber in the absence of gravity. Three regimes, barrel only (bell-like only), clam-shell only (half-bell-like only), and coexistence, can be identified. However, on superhydrophobic surfaces, the regime of clam-shell only is deflated, since the gravitational energy benefits barrel more than clam-shell. On the other hand, on hydrophilic surfaces, the regime of bell-like only prevails owing to the spreading tendency of the drop and the coexistent regime diminishes significantly.

For the second part, the equilibrium morphology of a drop in a horizontal tube can provide useful information for two-phase flow in microfluidics devices in which the capillary force dominates. A drop-in-tube system is analogous to a drop-on-fiber one and two conformations are obtained, adhered drop and liquid slug, by the approaches of experiments and Surface Evolver simulations. The adhered drop conformation tends to exist at small volume, whereas the liquid slug conformation is favored at larger volume. Around the transition volume between the two conformations, both morphologies can coexist. The experimental results are consistent with those of simulation outcomes. The morphological phase diagram of the drop-in-tube system is constructed via SE simulations by varying the drop volume and contact angle. Three regimes can be identified through the upper and lower boundary curves: adhered drop only, liquid slug only, and coexistence. Compared to the case with negligible gravity, the adhered drop is more favored than the liquid slug in the presence of gravity. As a result, the coexistence regime expands substantially.

For the third part, controlling the droplet equilibrium location and shape on a conical fiber is essential to industrial applications such as dip-pen nanolithography. In this study, the equilibrium conformations of a drop on a vertical, conical fiber has been investigated by the finite element method, Surface Evolver simulations. Similar to the morphology of a drop on a cylinder, two different types (barrel shape and clam-shell shape) can be obtained. In the absence of gravity, the droplet moves upwards (lower curvature) and the total surface energy decays as the drop ascends. Whatever the initial conformation of the drop on a conical fiber is, the rising drop exhibits the clam-shell shape eventually and there is no equilibrium location. However, in the presence of gravity, the drop can stop at the equilibrium location stably. For a given contact angle, the clam-shell shape is generally favored for smaller drops but the barrel shape is dominant for larger drops. In a certain range of drop volume, the coexistence of both barrel and clam-shell shapes is observed. For large enough drops, the falling-off state is seen.

For the fourth part, the formation of a liquid bridge between a cone and a plane is related to dip-pen nanolithography. The meniscus shape and rupture process of a liquid meniscus between a cone and a plane are investigated by Surface Evolver, many-body dissipative particle dynamics, and macroscopic experiments. Dependent on the cone geometry, cone-plane separation, and wetting properties of cone and plane, three types of menisci can be observed before rupture and two types of wetting competition outcomes are seen after breakup. It is interesting to find that after rupture, the bulk of the liquid bridge volume is not necessarily retained by the cone which is more wettable. In fact, a sharp hydrophilic cone often loses wetting competition to a hydrophobic plane. To explain our findings, the “apparent” contact angle of the cone is introduced and the behavior of drop-on-cone/plane system is analogous to that of a liquid bridge between two parallel planes based on this concept.


口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT vi
CONTENTS ix
LIST OF FIGURES xii
Chapter 1 Introduction 1
1.1 Factors of Wetting…………. 1
1.1.1 Surface Tension. 1
1.1.2 Gravity Effect. 5
1.1.3 Geometry Effect. 7
1.2 Wetting Behavior on a Fiber 9
1.2.1 The Barrel Shape Droplet and the Clam-shell Shape Droplet. 9
1.2.2 Four Approaches in Determining the Equilibrium Shapes of a Fiber-droplet System. 13
1.3 Research Objectives 18
1.4 Simulation Tool: the Surface Evolver (SE) 20
1.5 References 21
Chapter 2 An Equilibrium Phase Diagram of Drops at the Bottom of a Fiber Standing on Superhydrophobic Flat Surfaces 24
2.1 Introduction 24
2.2 Simulation and Experimental Methods 27
2.2.1 Surface Evolver. 27
2.2.2 Experimental Observation. 30
2.3 Results and Discussion 31
2.3.1 Drop on a Fiber Standing on a Flat, Superhydrophobic Surface. 31
2.3.2 Shape Characteristics of a Barrel Drop on a Fiber/Superhyphobic Plane. 36
2.3.3 Droplet on a Fiber Standing on a Flat, Partially Wetting Surface. 40
2.4 References 45
Chapter 3 Equilibrium Morphological Phase Diagram of Drops in Hydrophilic Cylindrical Channels 48
3.1 Introduction 48
3.2 Simulation and Experimental Methods 49
3.2.1 Surface Evolver. 49
3.2.2 Experimental Observation. 51
3.3 Results and Discussion 51
3.3.1 Morphologies of Drops in Horizontal Cylindrical Tubes. 52
3.3.2 Comparison between Experimental and Simulation Results of Drops in Hydrophilic Cylindrical Tubes. 56
3.3.3 Phase Diagram of Drops in Hydrophilic Cylindrical Tubes. 61
3.4 References 67
Chapter 4 Drops on Hydrophilic Conical Fibers: Gravity Effect and Coexistent States 69
4.1 Introduction……………………… 69
4.2 Simulation Methods 71
4.3 Results and Discussion 74
4.3.1 A Drop on Hydrophilic Conical Fiber without Gravity. 74
4.3.2 A Drop on a Hydrophilic Conical Fiber with Gravity. 77
4.3.3 Drop Morphology and Coexistence State. 81
4.4 References 84
Chapter 5 Meniscus Shape and Wetting Competition of a Drop between a Cone and a Plane 87
5.1 Introduction…………………… 87
5.2 Simulation and Experimental Methods 89
5.2.1 Surface Evolver. 90
5.2.2 Materials and Experimental Method. 91
5.2.3 Many-Body Dissipative Particle Dynamics (MDPD). 91
5.3 Results and Discussion 92
5.3.1 Three Types of Meniscus Shapes. 92
5.3.2 Meniscus Type Transformations by Changing Cone Angles. 94
5.3.3 Critical Distance for Liquid Bridge Stability (Cone Angle Dependence). 97
5.3.4 Wetting Competition: Many-Body Dissipative Particle Dynamics Simulation and Experiment. 100
5.4 References 104
Chapter 6 Conclusions 107



[1]Silberzan, P.; Léger, L. Evidence for a New Spreading Regime between Partial and Total Wetting. Phys. Rev. Lett. 1991, 66, 185-188.
[2]Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London 1805, 95, 65-87.
[3]Wikipedia-Curvature. Available from: http://en.wikipedia.org/wiki/Curvature.
[4]Berthier, J. Microdrops and digital microfluidics. William Andrew Publishing 2008.
[5]Wenzel, R. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988-994.
[6]Cassie, A.; Baxter, S. Wettability of Porous Surfaces. T. Faraday Soc. 1944, 40, 546-551.
[7]Plateau, J. Statique experimentale et theorique des liquides soumis aux seules forces moleculaires. Gauthier-Villars 1873.
[8]Rayleigh, L. On the Instability of Cylindrical Fluid Surfaces. Phil. Mag. 1892, 34, 177-180.
[9]Carroll, B. The Equilibrium of Liquid Drops on Smooth and Rough Circular Cylinders. J. Colloid Interface Sci. 1984, 97, 195-200.
[10]Brochard, F. Spreading of Liquid Drops on Thin Cylinders: The "Manchon/Droplet" Transition. J. Chem. Phys. 1986, 84, 4664.
[11]Carroll, B. The Accurate Measurement of Contact Angle, Phase Contact Areas, Drop Volume, and Laplace Excess Pressure in Drop-on-Fiber Systems. J. Colloid Interface Sci. 1976, 57, 488-495.
[12]McHale, G.; Newton, M. I.; Carroll, B. J. The Shape and Stability of Small Liquid Drops on Fibers. Oil. Gas Sci. Technol. 2001, 56, 47-54.
[13]Rebouillat, S.; Letellier, B.; Steffenino, B. Wettability of Single Fibres-Beyond the Contact Angle Approach. Int. J. Adhes. Adhes. 1999, 19,. 303-314.
[14]Adam, N. K. Detergent Action and its Relation to Wetting and Emulsification. J. Soc. Dyers Colour. 1937, 53, 121-129.
[15]Carroll, B. J. Equilibrium Conformations of Liquid Drops on Thin Cylinders under Forces of Capillarity. A Theory for the Roll-up Process. Langmuir 1986, 2, 248-250.
[16] McHale, G.; Newton, M. I. Global Geometry and the Equilibrium Shapes of Liquid Drops on Fibers. Colloids Surf., A 2002, 206, 79-86.
[17]McHale, G.; Käb, N.A.; Newton, M.I.; Rowan, S.M. Wetting of a High-Energy Fiber Surface. J. Colloid Interface Sci. 1997, 186, 453-461.
[18] Chou, T. H.; Hong, S. J.; Liang, Y. E.; Tsao, H. K.; Sheng, Y. J. Equilibrium Phase Diagram of Drop-on-Fiber: Coexistent States and Gravity Effect. Langmuir 2011, 27, 3685-3692.
[19]Quéré, D. Fluid Coating on a Fiber. Ann. Rev. Fluid Mech. 1999, 31, 347-384.
[20]Carroll, B. Physical Aspects of Detergency. Colloids Surf. A Physicochem. Eng. Asp. 1993, 74, 131-167.
[21]Bernet, N.; Bourban, P. E.; Månson, J.A.E. On the Characterization of Wetting and Adhesion in Glass Fiber-PA12 composites. J. Thermoplast. Compos. Mater. 2000, 13, 434-450.
[22]Lorenceau, E.; Clanet, C.; Quere, D. Capturing Drops with a Thin Fiber. J. Colloid Interface Sci. 2004, 279,192-197.
[23]Lorenceau, E.; Quéré, D. Drops on a Conical Wire. J. Fluid Mech. 2004, 510, 29-45.
[24]Gilet, T.; Terwagne, D.; Vandewalle, N. Digital Microfluidics on a Wire. Appl. Phys. Lett. 2009, 95, 014106.
[25]Brakke, K. The Surface Evolver Exp. Math. 1992, 1, 141-165.
[26]Jansen, H. P.; Bliznyuk, O.; Kooij, E. S.; Poelsema, B.; Zandvliet, H. J. W. Simulating Anisotropic Droplet Shapes on Chemically Striped Patterned Surfaces. Langmuir 2011, 28, 499-505.
[27]Tóth, T.; Ferraro, D.; Chiarello, E.; Pierno, M.; Mistura, G.; Bissacco, G.; Semprebon, C. Suspension of Water Droplets on Individual Pillars. Langmuir 2011, 27, 4742-4748.
[28] Lu, G.; Tan, H. Y.; Neild, A.; Liew, O. W; Yu, Y; Ng, T. W. Liquid Filling in Standard Circular Well Microplates. J. Appl. Phys. 2010, 108, 124701.
[29] Wei, Q.; Mather, R. R.; Fotheringham, A. F.; Yang, R. D. Observation of Wetting Behavior of Polypropylene Microfibers by Environmental Scanning Electron Microscope. J. Aerosol Sci. 2002, 33, 1589-1593.
[30]Méndez-Vilas, A.; Jódar-Reyes, A. B.; González-Martín, M. L. Ultrasmall Liquid Droplets on Solid Surfaces: Production, Imaging, and Relevance for Current Wetting Research. Small 2009, 5, 1366-1390.
[31] Wu, X. F.; Bedarkar, A.; Vaynberg, K. A. Droplets Wetting on Filament Rails: Surface Energy and Morphology Transition. J. Colloid Interface Sci. 2010, 341, 326-332.
[32] De Gennes, P. G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena, Drops, Bubbles, Pears, Waves; Springer: New York, 2004.
[33]Lorenceau, E.; Senden, T.; Quéré, D. Wetting of Fibers, in Molecular Gels, ed. Weiss, R. G. and Terech, P. Springer, Netherlands, 2006, pp. 223–237.
[34]Zheng, Y.; Bai, H.; Huang, Z.; Tian, X.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional Water Collection on Wetted Spider Silk. Nature 2010, 463, 640-643.
[35] Huang, Z.; Chen, Y.; Zheng, Y.; Jiang, L. Capillary Adhesion of Wetted Cribellate Spider Capture Silks for Larger Pearly Hanging-drops. Soft Matter 2011, 7, 9468-9473.
[36]Bai, H.; Sun, R. ; Ju, J.; Yao,X.; Zheng , Y.; Jiang, L. Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection. Small 2011, 7, 3429-3433.
[37]Gilet, T.; Terwagne, D.; Vandewalle, N. Droplets Sliding on Fibres. Eur. Phys. J. E 2010, 31, 253-262.
[38] Ginger, D. S.; Zhang , H.; Mirkin, C. A. The Evolution of Dip-Pen Nanolithography. Angew. Chem., Int. Ed.2004, 43, 30-45.
[39] Jaschke, M.; Butt, H. J. Deposition of Organic Material by the Tip of a Scanning Force Microscope. Langmuir 1995, 11, 1061-1064.
[40] Eral, H. B.; de Ruiter, J.; de Ruiter, R.; Oh, J. M.; Semprebon, C.; Brinkmann, M.; Mugele, F. Drops on Functional Fibers: from Barrels to Clamshells and Back Soft Matter 2011, 7, 5138-5143.
[41]de Ruiter, R.; de Ruiter, J.; Eral, H. B.; Semprebon, C.; Brinkmann, M.; Mugele, F. Buoyant Droplets on Functional Fibers. Langmuir 2012, 28, 13300-13306.
[42]Du, J.; Michielsen, S.; Lee, H. J. Profiles of Liquid Drops at the Bottom of Cylindrical Fibers Standing on Flat Substrates. Langmuir, 2012, 28, 722-728.
[43]Chou, T. H.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Wetting Behavior of a Drop Atop Holes. J. Phys. Chem. B 2010, 114, 7509-7515.
[44]Hong, S. J.; Chang, F. M.; Chou, T. H.; Chan, S. H.; Sheng, Y. J.; Tsao, H. K. Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning. Langmuir 2011, 27, 6890-6896.
[45]Chou, T. H.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Drops Sitting on a Tilted Plate: Receding and Advancing Pinning. Langmuir 2012, 28, 5158-5166.
[46]Hong, S. J.; Chou, T. H.; Chan, S. H.; Sheng, Y. J.; Tsao, H. K. Droplet Compression and Relaxation by a Superhydrophobic Surface: Contact Angle Hysteresis. Langmuir 2012, 28, 5606-5613.
[47]Hong, S. J.; Chang, C. C.; Chou, T. H.; Sheng, Y. J.; Tsao, H. K. A Drop Pinned by a Designed Patch on a Tilted Superhydrophobic Surface: Mimicking Desert Beetle. J. Phys. Chem. C 2012, 116, 26487-26495.
[48]Santos, M. J.; White, J. A. Theory and Simulation of Angular Hysteresis on Planar Surfaces. Langmuir 2011, 27, 14868-14875.
[49]Santos, M. J.; Velasco, S.; White, J. A. Simulation Analysis of Contact Angles and Retention Forces of Liquid Drops on Inclined Surfaces. Langmuir 2012, 28, 11819-11826.
[50] Kashid, M. N.; Agar, D. W. Hydrodynamics of Liquid–liquid Slug Flow Capillary Microreactor: Flow Regimes, Slug Size and Pressure Drop. Chem. Eng. J. 2007, 131, 1-13.
[51] Dreyfus, R.; Tabeling P.; Willaime, H. Ordered and Disordered Patterns in Two-Phase Flows in Microchannels. Phys. Rev. Lett. 2003, 90, 144505(1)-(4).
[52] Sugiura, S.; Nakajima, M.; Tong, J. H.; Nabetani, H.; Seki, M. Preparation of Monodispersed Solid Lipid Microspheres Using a Microchannel Emulsification Technique. J. Colloid Interface Sci. 2000, 227, 95-103.
[53]Sugiura, S.; Nakajima, M.; Seki, M. Effect of Channel Structure on Microchannel Emulsification. Langmuir 2002, 18, 5708-5712.
[54] Garstecki, P.; Gitlin, I.; DiLuzio, W.; Whitesides, G. M.; Kumacheva, E.; Stone, H. A. Formation of Monodisperse Bubbles in a Microfluidic Flow-focusing Device. Appl. Phys. Lett. 2004, 85, 2649-2651.
[55]Link, D. R.; Anna, S. L.; Weitz, D. A.; Stone, H. A. Geometrically Mediated Breakup of Drops in Microfluidic Devices. Phys. Rev. Lett. 2004, 92, 054503(1)-(4).
[56] Anna, S. L.; Bontoux , N.; Stone, H. A. Formation of Dispersions Using ‘‘flow focusing’’ in Microchannels. Appl. Phys. Lett. 2003, 82, 364-366.
[57]Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001, 86, 4163-4166.
[58]Zheng, B.; Ismagilov, R. F. A Microfluidic Approach for Screening Submicroliter Volumes against Multiple Reagentsby Using Preformed Arrays of Nanoliter Plugs in a Three-Phase Liquid/Liquid/Gas Flow. Angew. Chem. Int. Ed. 2005, 44, 2520-2523.
[59]Cheah, M. J.; Kevrekidis, I. G.; Benziger, J. B. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity. Langmuir 2013, 29, 9918-9934.
[60]Cheah, M. J.; Kevrekidis, I. G.; Benziger, J. B. Water slug to drop and film transitions in gas-flow channels. Langmuir 2013, 29, 15122-15136.
[61]Hsieh, S. F.; Chang, C. P.; Juang, Y. J.; Wei, H. H. Stretching DNA with Electric Fields Beneath Submicron Interfacial Constriction Created by a Closely Fitting Microdroplet in a Microchannel. Appl. Phys. Lett. 2008, 93, 084103(1)-(3).
[62]Juarez, G.; Arratia, P. E. Extensional Rheology of DNA Suspensions in Microfluidic Devices. Soft Matter 2011, 7, 9444-9452.
[63] Liang, Y. E.; Chang, C. C.; Tsao, H. K.; Sheng Y. J. An Equilibrium Phase Diagram of Drops at the Bottom of a Fiber Standing on Superhydrophobic Flat Surfaces. Soft Matter 2013, 9, 9867-9875.
[64]Liang, Y. E.; Tsao, H. K.; Sheng Y. J. Drops on Hydrophilic Conical Fibers: Gravity Effect and Coexistent States. Langmuir 2015, 31, 1704-1710.
[65]Zhao, B.; Moore, J. S.; Beebe, D.L. Surface-Directed Liquid Flow Inside Microchannels Science 2001, 291, 1023-1026.
[66]Yue, R. F.; Wu, J. G.; Zeng, X. F.; Kang, M.; Liu, L. T. Demonstration of Four Fundamental Operations of Liquid Droplets for Digital Microfluidic Systems Based on an Electrowetting-on-Dielectric Actuator Chin. Phys. Lett. 2006, 23, 2303.
[67]Ichimura, K.; Oh, S. K.; Nakagawa, M. Light-Driven Motion of Liquids on a Photoresponsive Surface Science 2000, 288, 1624-1626.
[68]Daniel, S. ; Chaudhury, M. K.; Chen, J. C. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface Science 2001, 291, 633-636.
[69]Stone, H. A.; Stroock, A. D.; Adjari, A. ENGINEERING FLOWS IN SMALL DEVICES: Microfluidics Toward a Lab-on-a-Chip Annu. Rev. Fluid Mech. 2004, 36, 381-411.
[70]Lazar, P.; Riegler, H. Reversible Self-Propelled Droplet Movement: A New Driving Mechanism Phys. Rev. Lett. 2005, 95, 136103.
[71]Sumino, Y.; Magome, N.; Hamada, T. ; Yoshikawa, K. Self-Running Droplet: Emergence of Regular Motion from Nonequilibrium Noise Phys. Rev. Lett. 2005, 94, 068301.
[72]Hancock, M. J.; He, J.; Mano, J. F.; Khademhosseini, A. Surface-Tension-Driven Gradient Generation in a Fluid Stripe for Bench-Top and Microwell Applications Small 2011, 7, 892-901.
[73] Bouasse H. Capillarite, Phenomenes Superficiels, Delagrave: Paris, 1924.
[74] Bico, J.; Quéré, D. Self-propelling slugs J. Fluid Mech. 2002, 467, 101-127.
[75]Darhuber A. A.; Troian, S. M. PRINCIPLES OF MICROFLUIDIC ACTUATION BY MODULATION OF SURFACE STRESSES Annu. Rev. Fluid Mech. 2005, 37, 425-455.
[76]Hanumanthu, R.; Stebe, K. J. Equilibrium shapes and locations of axisymmetric, liquid drops on conical, solid surfaces Colloids Surf., A 2006, 282, 227-239.
[77]Liu, J. L.; Xia, R.; Li, B. W.; Feng, X. Q. Directional Motion of Droplets in a Conical Tube or on a Conical Fibre Chin. Phys. Lett. 2007, 24, 3210-3213.
[78]Renvoise, P.; Bush, J. W. M.; Prakash, M.; Quéré D. Drop propulsion in tapered tubes Europhys. Lett. 2009, 86, 64003.
[79]Michielsen, S.; Zhang, J.; Du, J.; Lee, H. J. Gibbs Free Energy of Liquid Drops on Conical Fibers Langmuir 2011, 27, 11867-11872.
[80]Wang, Z.; Chang, C. C.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Trapped liquid drop in a microchannel: Multiple stable states Phys. Rev. E 2013, 87, 062401.
[81]Lv, C.; Chen, C.; Chuang, Y. C.; Tseng, F. G.; Yin, Y.; Grey, F.; Zheng, Q. Substrate Curvature Gradient Drives Rapid Droplet Motion Phys. Rev. Lett. 2014, 113, 026101.
[82]Butt, H. J.; Kappl, M. Normal Capillary Forces. Adv. Colloid. Interface Sci. 2009, 146, 48-60.
[83] Tselishchev, Y. G.; Val’tsifer, V. A. Influence of the Type of Contact between Particles Joined by a Liquid Bridge on the Capillary Cohesive Forces. Colloid J. 2003, 65(3), 385-389.
[84]Alencar, A. M.; Wolfe, E. ; Buldyrev, S. V. Monte Carlo Simulation of Liquid Bridge Rupture: Application to Lung Physiology. Phys. Rev. E. 2006, 74, 026311(1)-(13).
[85]Shi, D.; McCarthy, J. J. Numerical Simulation of Liquid Transfer between Particles. Powder Technol. 2008, 184, 64-75.
[86]Qian, B.; Breuer, K. S. The Motion, Stability and Breakup of a Stretching Liquid Bridge with a Receding Contact Line. J. Fluid Mech. 2011, 666, 554-572.
[87]Chen, H.; Tang, T.; Amirfazli, A. Liquid Transfer Mechanism between Two Surfaces and the Role of Contact Angles. Soft Matter 2014, 10, 2503-2507.
[88]Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Anti-Smudge Behavior of Facilely Fabricated Liquid-Infused Surfaces with Extremely Low Contact Angle Hysteresis Property. RSC Adv. 2016, 6, 19214-19222.
[89]Chen, H. ; Amirfazli, A.; Tang, T. Modeling Liquid Bridge between Surfaces with Contact Angle Hysteresis. Langmuir 2013, 29, 3310-3319.
[90]Liang, Y. E.; Wu, C. J.;Tsao, H. K.; Sheng, Y. J. Equilibrium Morphological Phase Diagram of Drops in Hydrophilic Cylindrical Channels. J. Phys. Chem. C 2015, 119 (46), 25880-25886.
[91] Warren, P. B. Vapor-Liquid Coexistence in Many-Body Dissipative Particle Dynamics. Phys. Rev. E. 2003, 68, 066702(1)-(8).
[92]Ghoufi, A.; Emile, J.; Malfreyt, P. Recent Advances in Many Body Dissipative Particles Dynamics Simulations of Liquid-Vapor Interfaces. Eur. Phys. J. E 2013 36: 10(1)-(12).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊