|
[1]Silberzan, P.; Léger, L. Evidence for a New Spreading Regime between Partial and Total Wetting. Phys. Rev. Lett. 1991, 66, 185-188. [2]Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London 1805, 95, 65-87. [3]Wikipedia-Curvature. Available from: http://en.wikipedia.org/wiki/Curvature. [4]Berthier, J. Microdrops and digital microfluidics. William Andrew Publishing 2008. [5]Wenzel, R. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988-994. [6]Cassie, A.; Baxter, S. Wettability of Porous Surfaces. T. Faraday Soc. 1944, 40, 546-551. [7]Plateau, J. Statique experimentale et theorique des liquides soumis aux seules forces moleculaires. Gauthier-Villars 1873. [8]Rayleigh, L. On the Instability of Cylindrical Fluid Surfaces. Phil. Mag. 1892, 34, 177-180. [9]Carroll, B. The Equilibrium of Liquid Drops on Smooth and Rough Circular Cylinders. J. Colloid Interface Sci. 1984, 97, 195-200. [10]Brochard, F. Spreading of Liquid Drops on Thin Cylinders: The "Manchon/Droplet" Transition. J. Chem. Phys. 1986, 84, 4664. [11]Carroll, B. The Accurate Measurement of Contact Angle, Phase Contact Areas, Drop Volume, and Laplace Excess Pressure in Drop-on-Fiber Systems. J. Colloid Interface Sci. 1976, 57, 488-495. [12]McHale, G.; Newton, M. I.; Carroll, B. J. The Shape and Stability of Small Liquid Drops on Fibers. Oil. Gas Sci. Technol. 2001, 56, 47-54. [13]Rebouillat, S.; Letellier, B.; Steffenino, B. Wettability of Single Fibres-Beyond the Contact Angle Approach. Int. J. Adhes. Adhes. 1999, 19,. 303-314. [14]Adam, N. K. Detergent Action and its Relation to Wetting and Emulsification. J. Soc. Dyers Colour. 1937, 53, 121-129. [15]Carroll, B. J. Equilibrium Conformations of Liquid Drops on Thin Cylinders under Forces of Capillarity. A Theory for the Roll-up Process. Langmuir 1986, 2, 248-250. [16] McHale, G.; Newton, M. I. Global Geometry and the Equilibrium Shapes of Liquid Drops on Fibers. Colloids Surf., A 2002, 206, 79-86. [17]McHale, G.; Käb, N.A.; Newton, M.I.; Rowan, S.M. Wetting of a High-Energy Fiber Surface. J. Colloid Interface Sci. 1997, 186, 453-461. [18] Chou, T. H.; Hong, S. J.; Liang, Y. E.; Tsao, H. K.; Sheng, Y. J. Equilibrium Phase Diagram of Drop-on-Fiber: Coexistent States and Gravity Effect. Langmuir 2011, 27, 3685-3692. [19]Quéré, D. Fluid Coating on a Fiber. Ann. Rev. Fluid Mech. 1999, 31, 347-384. [20]Carroll, B. Physical Aspects of Detergency. Colloids Surf. A Physicochem. Eng. Asp. 1993, 74, 131-167. [21]Bernet, N.; Bourban, P. E.; Månson, J.A.E. On the Characterization of Wetting and Adhesion in Glass Fiber-PA12 composites. J. Thermoplast. Compos. Mater. 2000, 13, 434-450. [22]Lorenceau, E.; Clanet, C.; Quere, D. Capturing Drops with a Thin Fiber. J. Colloid Interface Sci. 2004, 279,192-197. [23]Lorenceau, E.; Quéré, D. Drops on a Conical Wire. J. Fluid Mech. 2004, 510, 29-45. [24]Gilet, T.; Terwagne, D.; Vandewalle, N. Digital Microfluidics on a Wire. Appl. Phys. Lett. 2009, 95, 014106. [25]Brakke, K. The Surface Evolver Exp. Math. 1992, 1, 141-165. [26]Jansen, H. P.; Bliznyuk, O.; Kooij, E. S.; Poelsema, B.; Zandvliet, H. J. W. Simulating Anisotropic Droplet Shapes on Chemically Striped Patterned Surfaces. Langmuir 2011, 28, 499-505. [27]Tóth, T.; Ferraro, D.; Chiarello, E.; Pierno, M.; Mistura, G.; Bissacco, G.; Semprebon, C. Suspension of Water Droplets on Individual Pillars. Langmuir 2011, 27, 4742-4748. [28] Lu, G.; Tan, H. Y.; Neild, A.; Liew, O. W; Yu, Y; Ng, T. W. Liquid Filling in Standard Circular Well Microplates. J. Appl. Phys. 2010, 108, 124701. [29] Wei, Q.; Mather, R. R.; Fotheringham, A. F.; Yang, R. D. Observation of Wetting Behavior of Polypropylene Microfibers by Environmental Scanning Electron Microscope. J. Aerosol Sci. 2002, 33, 1589-1593. [30]Méndez-Vilas, A.; Jódar-Reyes, A. B.; González-Martín, M. L. Ultrasmall Liquid Droplets on Solid Surfaces: Production, Imaging, and Relevance for Current Wetting Research. Small 2009, 5, 1366-1390. [31] Wu, X. F.; Bedarkar, A.; Vaynberg, K. A. Droplets Wetting on Filament Rails: Surface Energy and Morphology Transition. J. Colloid Interface Sci. 2010, 341, 326-332. [32] De Gennes, P. G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena, Drops, Bubbles, Pears, Waves; Springer: New York, 2004. [33]Lorenceau, E.; Senden, T.; Quéré, D. Wetting of Fibers, in Molecular Gels, ed. Weiss, R. G. and Terech, P. Springer, Netherlands, 2006, pp. 223–237. [34]Zheng, Y.; Bai, H.; Huang, Z.; Tian, X.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional Water Collection on Wetted Spider Silk. Nature 2010, 463, 640-643. [35] Huang, Z.; Chen, Y.; Zheng, Y.; Jiang, L. Capillary Adhesion of Wetted Cribellate Spider Capture Silks for Larger Pearly Hanging-drops. Soft Matter 2011, 7, 9468-9473. [36]Bai, H.; Sun, R. ; Ju, J.; Yao,X.; Zheng , Y.; Jiang, L. Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection. Small 2011, 7, 3429-3433. [37]Gilet, T.; Terwagne, D.; Vandewalle, N. Droplets Sliding on Fibres. Eur. Phys. J. E 2010, 31, 253-262. [38] Ginger, D. S.; Zhang , H.; Mirkin, C. A. The Evolution of Dip-Pen Nanolithography. Angew. Chem., Int. Ed.2004, 43, 30-45. [39] Jaschke, M.; Butt, H. J. Deposition of Organic Material by the Tip of a Scanning Force Microscope. Langmuir 1995, 11, 1061-1064. [40] Eral, H. B.; de Ruiter, J.; de Ruiter, R.; Oh, J. M.; Semprebon, C.; Brinkmann, M.; Mugele, F. Drops on Functional Fibers: from Barrels to Clamshells and Back Soft Matter 2011, 7, 5138-5143. [41]de Ruiter, R.; de Ruiter, J.; Eral, H. B.; Semprebon, C.; Brinkmann, M.; Mugele, F. Buoyant Droplets on Functional Fibers. Langmuir 2012, 28, 13300-13306. [42]Du, J.; Michielsen, S.; Lee, H. J. Profiles of Liquid Drops at the Bottom of Cylindrical Fibers Standing on Flat Substrates. Langmuir, 2012, 28, 722-728. [43]Chou, T. H.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Wetting Behavior of a Drop Atop Holes. J. Phys. Chem. B 2010, 114, 7509-7515. [44]Hong, S. J.; Chang, F. M.; Chou, T. H.; Chan, S. H.; Sheng, Y. J.; Tsao, H. K. Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning. Langmuir 2011, 27, 6890-6896. [45]Chou, T. H.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Drops Sitting on a Tilted Plate: Receding and Advancing Pinning. Langmuir 2012, 28, 5158-5166. [46]Hong, S. J.; Chou, T. H.; Chan, S. H.; Sheng, Y. J.; Tsao, H. K. Droplet Compression and Relaxation by a Superhydrophobic Surface: Contact Angle Hysteresis. Langmuir 2012, 28, 5606-5613. [47]Hong, S. J.; Chang, C. C.; Chou, T. H.; Sheng, Y. J.; Tsao, H. K. A Drop Pinned by a Designed Patch on a Tilted Superhydrophobic Surface: Mimicking Desert Beetle. J. Phys. Chem. C 2012, 116, 26487-26495. [48]Santos, M. J.; White, J. A. Theory and Simulation of Angular Hysteresis on Planar Surfaces. Langmuir 2011, 27, 14868-14875. [49]Santos, M. J.; Velasco, S.; White, J. A. Simulation Analysis of Contact Angles and Retention Forces of Liquid Drops on Inclined Surfaces. Langmuir 2012, 28, 11819-11826. [50] Kashid, M. N.; Agar, D. W. Hydrodynamics of Liquid–liquid Slug Flow Capillary Microreactor: Flow Regimes, Slug Size and Pressure Drop. Chem. Eng. J. 2007, 131, 1-13. [51] Dreyfus, R.; Tabeling P.; Willaime, H. Ordered and Disordered Patterns in Two-Phase Flows in Microchannels. Phys. Rev. Lett. 2003, 90, 144505(1)-(4). [52] Sugiura, S.; Nakajima, M.; Tong, J. H.; Nabetani, H.; Seki, M. Preparation of Monodispersed Solid Lipid Microspheres Using a Microchannel Emulsification Technique. J. Colloid Interface Sci. 2000, 227, 95-103. [53]Sugiura, S.; Nakajima, M.; Seki, M. Effect of Channel Structure on Microchannel Emulsification. Langmuir 2002, 18, 5708-5712. [54] Garstecki, P.; Gitlin, I.; DiLuzio, W.; Whitesides, G. M.; Kumacheva, E.; Stone, H. A. Formation of Monodisperse Bubbles in a Microfluidic Flow-focusing Device. Appl. Phys. Lett. 2004, 85, 2649-2651. [55]Link, D. R.; Anna, S. L.; Weitz, D. A.; Stone, H. A. Geometrically Mediated Breakup of Drops in Microfluidic Devices. Phys. Rev. Lett. 2004, 92, 054503(1)-(4). [56] Anna, S. L.; Bontoux , N.; Stone, H. A. Formation of Dispersions Using ‘‘flow focusing’’ in Microchannels. Appl. Phys. Lett. 2003, 82, 364-366. [57]Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001, 86, 4163-4166. [58]Zheng, B.; Ismagilov, R. F. A Microfluidic Approach for Screening Submicroliter Volumes against Multiple Reagentsby Using Preformed Arrays of Nanoliter Plugs in a Three-Phase Liquid/Liquid/Gas Flow. Angew. Chem. Int. Ed. 2005, 44, 2520-2523. [59]Cheah, M. J.; Kevrekidis, I. G.; Benziger, J. B. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity. Langmuir 2013, 29, 9918-9934. [60]Cheah, M. J.; Kevrekidis, I. G.; Benziger, J. B. Water slug to drop and film transitions in gas-flow channels. Langmuir 2013, 29, 15122-15136. [61]Hsieh, S. F.; Chang, C. P.; Juang, Y. J.; Wei, H. H. Stretching DNA with Electric Fields Beneath Submicron Interfacial Constriction Created by a Closely Fitting Microdroplet in a Microchannel. Appl. Phys. Lett. 2008, 93, 084103(1)-(3). [62]Juarez, G.; Arratia, P. E. Extensional Rheology of DNA Suspensions in Microfluidic Devices. Soft Matter 2011, 7, 9444-9452. [63] Liang, Y. E.; Chang, C. C.; Tsao, H. K.; Sheng Y. J. An Equilibrium Phase Diagram of Drops at the Bottom of a Fiber Standing on Superhydrophobic Flat Surfaces. Soft Matter 2013, 9, 9867-9875. [64]Liang, Y. E.; Tsao, H. K.; Sheng Y. J. Drops on Hydrophilic Conical Fibers: Gravity Effect and Coexistent States. Langmuir 2015, 31, 1704-1710. [65]Zhao, B.; Moore, J. S.; Beebe, D.L. Surface-Directed Liquid Flow Inside Microchannels Science 2001, 291, 1023-1026. [66]Yue, R. F.; Wu, J. G.; Zeng, X. F.; Kang, M.; Liu, L. T. Demonstration of Four Fundamental Operations of Liquid Droplets for Digital Microfluidic Systems Based on an Electrowetting-on-Dielectric Actuator Chin. Phys. Lett. 2006, 23, 2303. [67]Ichimura, K.; Oh, S. K.; Nakagawa, M. Light-Driven Motion of Liquids on a Photoresponsive Surface Science 2000, 288, 1624-1626. [68]Daniel, S. ; Chaudhury, M. K.; Chen, J. C. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface Science 2001, 291, 633-636. [69]Stone, H. A.; Stroock, A. D.; Adjari, A. ENGINEERING FLOWS IN SMALL DEVICES: Microfluidics Toward a Lab-on-a-Chip Annu. Rev. Fluid Mech. 2004, 36, 381-411. [70]Lazar, P.; Riegler, H. Reversible Self-Propelled Droplet Movement: A New Driving Mechanism Phys. Rev. Lett. 2005, 95, 136103. [71]Sumino, Y.; Magome, N.; Hamada, T. ; Yoshikawa, K. Self-Running Droplet: Emergence of Regular Motion from Nonequilibrium Noise Phys. Rev. Lett. 2005, 94, 068301. [72]Hancock, M. J.; He, J.; Mano, J. F.; Khademhosseini, A. Surface-Tension-Driven Gradient Generation in a Fluid Stripe for Bench-Top and Microwell Applications Small 2011, 7, 892-901. [73] Bouasse H. Capillarite, Phenomenes Superficiels, Delagrave: Paris, 1924. [74] Bico, J.; Quéré, D. Self-propelling slugs J. Fluid Mech. 2002, 467, 101-127. [75]Darhuber A. A.; Troian, S. M. PRINCIPLES OF MICROFLUIDIC ACTUATION BY MODULATION OF SURFACE STRESSES Annu. Rev. Fluid Mech. 2005, 37, 425-455. [76]Hanumanthu, R.; Stebe, K. J. Equilibrium shapes and locations of axisymmetric, liquid drops on conical, solid surfaces Colloids Surf., A 2006, 282, 227-239. [77]Liu, J. L.; Xia, R.; Li, B. W.; Feng, X. Q. Directional Motion of Droplets in a Conical Tube or on a Conical Fibre Chin. Phys. Lett. 2007, 24, 3210-3213. [78]Renvoise, P.; Bush, J. W. M.; Prakash, M.; Quéré D. Drop propulsion in tapered tubes Europhys. Lett. 2009, 86, 64003. [79]Michielsen, S.; Zhang, J.; Du, J.; Lee, H. J. Gibbs Free Energy of Liquid Drops on Conical Fibers Langmuir 2011, 27, 11867-11872. [80]Wang, Z.; Chang, C. C.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Trapped liquid drop in a microchannel: Multiple stable states Phys. Rev. E 2013, 87, 062401. [81]Lv, C.; Chen, C.; Chuang, Y. C.; Tseng, F. G.; Yin, Y.; Grey, F.; Zheng, Q. Substrate Curvature Gradient Drives Rapid Droplet Motion Phys. Rev. Lett. 2014, 113, 026101. [82]Butt, H. J.; Kappl, M. Normal Capillary Forces. Adv. Colloid. Interface Sci. 2009, 146, 48-60. [83] Tselishchev, Y. G.; Val’tsifer, V. A. Influence of the Type of Contact between Particles Joined by a Liquid Bridge on the Capillary Cohesive Forces. Colloid J. 2003, 65(3), 385-389. [84]Alencar, A. M.; Wolfe, E. ; Buldyrev, S. V. Monte Carlo Simulation of Liquid Bridge Rupture: Application to Lung Physiology. Phys. Rev. E. 2006, 74, 026311(1)-(13). [85]Shi, D.; McCarthy, J. J. Numerical Simulation of Liquid Transfer between Particles. Powder Technol. 2008, 184, 64-75. [86]Qian, B.; Breuer, K. S. The Motion, Stability and Breakup of a Stretching Liquid Bridge with a Receding Contact Line. J. Fluid Mech. 2011, 666, 554-572. [87]Chen, H.; Tang, T.; Amirfazli, A. Liquid Transfer Mechanism between Two Surfaces and the Role of Contact Angles. Soft Matter 2014, 10, 2503-2507. [88]Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Anti-Smudge Behavior of Facilely Fabricated Liquid-Infused Surfaces with Extremely Low Contact Angle Hysteresis Property. RSC Adv. 2016, 6, 19214-19222. [89]Chen, H. ; Amirfazli, A.; Tang, T. Modeling Liquid Bridge between Surfaces with Contact Angle Hysteresis. Langmuir 2013, 29, 3310-3319. [90]Liang, Y. E.; Wu, C. J.;Tsao, H. K.; Sheng, Y. J. Equilibrium Morphological Phase Diagram of Drops in Hydrophilic Cylindrical Channels. J. Phys. Chem. C 2015, 119 (46), 25880-25886. [91] Warren, P. B. Vapor-Liquid Coexistence in Many-Body Dissipative Particle Dynamics. Phys. Rev. E. 2003, 68, 066702(1)-(8). [92]Ghoufi, A.; Emile, J.; Malfreyt, P. Recent Advances in Many Body Dissipative Particles Dynamics Simulations of Liquid-Vapor Interfaces. Eur. Phys. J. E 2013 36: 10(1)-(12).
|