|
1Sabo, M., Henschel, A., Froede, H., Klemm, E. & Kaskel, S. Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry 17, 3827-3832, doi:10.1039/b706432b (2007). 2Liu, H., Li, Y., Luque, R. & Jiang, H. A Tuneable Bifunctional Water-Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. Advanced Synthesis & Catalysis 353, 3107-3113, doi:10.1002/adsc.201100479 (2011). 3Opelt, S. et al. Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst. Catalysis Communications 9, 1286-1290, doi:10.1016/j.catcom.2007.11.019 (2008). 4Zhang, M. et al. Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. Catalysis Letters 142, 313-318, doi:10.1007/s10562-012-0767-7 (2012). 5Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angewandte Chemie-International Edition 47, 4144-4148, doi:10.1002/anie.200705998 (2008). 6Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G. & Fischer, R. A. Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials 22, 6393-6401, doi:10.1021/cm102529c (2010). 7Ishida, T., Kawakita, N., Akita, T. & Haruta, M. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bulletin 42, 267-274 (2009). 8Liao, Y.-T. et al. DeNovo Synthesis of Gold-Nanoparticle-Embedded, Nitrogen-Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability. Chemcatchem 8, 502-509, doi:10.1002/cctc.201501020 (2016). 9White, R. J., Luque, R., Budarin, V. L., Clark, J. H. & Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews 38, 481-494, doi:10.1039/b802654h (2009). 10Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews 97, 2373-2419, doi:10.1021/cr960406n (1997). 11Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813-821, doi:10.1038/nature00785 (2002). 12Banerjee, A. et al. MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. Journal of Materials Chemistry 22, 19694-19699, doi:10.1039/c2jm33798c (2012). 13Banerjee, A., Singh, U., Aravindan, V., Srinivasan, M. & Ogale, S. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOE-199) for application as anode for Li-ion batteries. Nano Energy 2, 1158-1163, doi:10.1016/j.nanoen.2013.04.008 (2013). 14Horcajada, P. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials 9, 172-178, doi:10.1038/nmat2608 (2010). 15Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Advanced Materials 18, 2073-2094, doi:10.1002/adma.200501576 (2006). 16Buijnsters, J. G., Zhong, R., Tsyntsaru, N. & Celis, J. P. Surface Wettability of Macroporous Anodized Aluminum Oxide. Acs Applied Materials & Interfaces 5, 3224-3233, doi:10.1021/am4001425 (2013). 17Beck, J. S. et al. A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES. Journal of the American Chemical Society 114, 10834-10843, doi:10.1021/ja00053a020 (1992). 18Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. M. ALUMINOPHOSPHATE MOLECULAR-SIEVES - A NEW CLASS OF MICROPOROUS CRYSTALLINE INORGANIC SOLIDS. Journal of the American Chemical Society 104, 1146-1147, doi:10.1021/ja00368a062 (1982). 19Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angewandte Chemie-International Edition 43, 2334-2375, doi:10.1002/anie.200300610 (2004). 20Liu, J. W. et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews 43, 6011-6061, doi:10.1039/c4cs00094c (2014). 21Furukawa, H., Cordova, K. E., O''Keeffe, M. & Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 974-+, doi:10.1126/science.1230444 (2013). 22Furukawa, H. et al. Ultrahigh Porosity in Metal-Organic Frameworks. Science 329, 424-428, doi:10.1126/science.1192160 (2010). 23Lu, W. G. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chemical Society Reviews 43, 5561-5593, doi:10.1039/c4cs00003j (2014). 24Kaye, S. S., Dailly, A., Yaghi, O. M. & Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3) (MOF-5). Journal of the American Chemical Society 129, 14176-+, doi:10.1021/ja076877g (2007). 25Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews 38, 1477-1504, doi:10.1039/b802426j (2009). 26An, J., Geib, S. J. & Rosi, N. L. Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework. Journal of the American Chemical Society 131, 8376-+, doi:10.1021/ja902972w (2009). 27Hu, Z., Deibert, B. J. & Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews 43, 5815-5840, doi:10.1039/c4cs00010b (2014). 28Lee, J. et al. Metal-organic framework materials as catalysts. Chemical Society Reviews 38, 1450-1459, doi:10.1039/b807080f (2009). 29Dhakshinamoorthy, A., Alvaro, M., Corma, A. & Garcia, H. Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions 40, 6344-6360, doi:10.1039/c1dt10354g (2011). 30Yang, S. J. et al. MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity. Chemistry of Materials 24, 464-470, doi:10.1021/cm202554j (2012). 31Zhu, Q. L. & Xu, Q. Metal-organic framework composites. Chemical Society Reviews 43, 5468-5512, doi:10.1039/c3cs60472a (2014). 32Li, C. et al. Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A 3, 5585-5591, doi:10.1039/c4ta06914e (2015). 33Yang, S. J., Im, J. H., Kim, T., Lee, K. & Park, C. R. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. Journal of Hazardous Materials 186, 376-382, doi:10.1016/j.jhazmat.2010.11.019 (2011). 34Wang, X. J. et al. MOF derived catalysts for electrochemical oxygen reduction. Journal of Materials Chemistry A 2, 14064-14070, doi:10.1039/c4ta01506a (2014). 35Chaikittisilp, W., Ariga, K. & Yamauchi, Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. Journal of Materials Chemistry A 1, 14-19, doi:10.1039/c2ta00278g (2013). 36Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Journal of Physical Chemistry B 106, 7729-7744, doi:10.1021/jp0209289 (2002). 37Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 1, 482-501, doi:10.1002/smll.200500006 (2005). 38Toshima, N. & Yonezawa, T. Bimetallic nanoparticles - novel materials for chemical and physical applications. New Journal of Chemistry 22, 1179-1201, doi:10.1039/a805753b (1998). 39Meilikhov, M. et al. Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 3701-3714, doi:10.1002/ejic.201000473 (2010). 40Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T. & Xu, Q. Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. Journal of the American Chemical Society 133, 11822-11825, doi:10.1021/ja200122f (2011). 41Horiuchi, Y. et al. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal-Organic Framework. Journal of Physical Chemistry C 116, 20848-20853, doi:10.1021/jp3046005 (2012). 42Jiang, H.-L. et al. Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal-Organic Framework. Journal of the American Chemical Society 131, 11302-+, doi:10.1021/ja9047653 (2009). 43Dhakshinamoorthy, A. & Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chemical Society Reviews 41, 5262-5284, doi:10.1039/c2cs35047e (2012). 44Park, Y. K. et al. Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chemical Communications 46, 3086-3088, doi:10.1039/c000775g (2010). 45Sun, Z., Li, G., Liu, L. & Liu, H.-o. Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol. Catalysis Communications 27, 200-205, doi:10.1016/j.catcom.2012.07.017 (2012). 46Zhang, T. et al. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. Chemical Engineering Journal 228, 398-404, doi:10.1016/j.cej.2013.05.020 (2013). 47Bagheri, A. et al. Synthesis and characterization of magnetic metal-organic framework (MOF) as a novel sorbent, and its optimization by experimental design methodology for determination of palladium in environmental samples. Talanta 99, 132-139, doi:10.1016/j.talanta.2012.05.030 (2012). 48Zhan, W.-w. et al. Semiconductor@Metal-Organic Framework Core-Shell Heterostructures: A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response. Journal of the American Chemical Society 135, 1926-1933, doi:10.1021/ja311085e (2013). 49Zhao, H. H., Song, H. L., Xu, L. L. & Chou, L. J. Isobutane dehydrogenation over the mesoporous Cr2O3/Al2O3 catalysts synthesized from a metal-organic framework MIL-101. Applied Catalysis a-General 456, 188-196, doi:10.1016/j.apcata.2013.02.018 (2013). 50Zlotea, C. et al. Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. Journal of the American Chemical Society 132, 2991-2997, doi:10.1021/ja9084995 (2010). 51Jiang, H.-L., Akita, T., Ishida, T., Haruta, M. & Xu, Q. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework. Journal of the American Chemical Society 133, 1304-1306, doi:10.1021/ja1099006 (2011). 52Vimont, A. et al. Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. Journal of the American Chemical Society 128, 3218-3227, doi:10.1021/ja056906s (2006). 53Li, P.-Z., Aranishi, K. & Xu, Q. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chemical Communications 48, 3173-3175, doi:10.1039/c2cc17302f (2012). 54Hermes, S. et al. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie-International Edition 44, 6237-6241, doi:10.1002/anie.200462515 (2005). 55Schroeder, F. et al. Ruthenium nanoparticles inside porous Zn4O(bdC)(3) by hydrogenolysis of adsorbed Ru(cod)(cot) : A solid-state reference system for surfactant-stabilized ruthenium colloids. Journal of the American Chemical Society 130, 6119-6130, doi:10.1021/ja078231u (2008). 56Ishida, T., Nagaoka, M., Akita, T. & Haruta, M. Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols. Chemistry-a European Journal 14, 8456-8460, doi:10.1002/chem.200800980 (2008). 57Lu, G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chemistry 4, 310-316, doi:10.1038/nchem.1272 (2012). 58Sugikawa, K., Furukawa, Y. & Sada, K. SERS-Active Metal-Organic Frameworks Embedding Gold Nanorods. Chemistry of Materials 23, 3132-3134, doi:10.1021/cm200737c (2011). 59Wang, P. et al. Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chemical Communications 49, 3330-3332, doi:10.1039/c3cc39275a (2013). 60Kujawski, W. et al. Removal of phenol from wastewater by different separation techniques. Desalination 163, 287-296, doi:10.1016/s0011-9164(04)90202-0 (2004). 61Bhargava, S. K. et al. Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research 45, 1221-1258, doi:10.1021/ie051059n (2006). 62Chedeville, O., Debaccq, M., Almanza, M. F. & Porte, C. Use of an ejector for phenol containing water treatment by ozonation. Separation and Purification Technology 57, 201-208, doi:10.1016/j.seppur.2007.04.004 (2007). 63Neyens, E. & Baeyens, J. A review of classic Fenton''s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials 98, 33-50, doi:10.1016/s0304-3894(02)00282-0 (2003). 64Kamenev, S., Kallas, J., Munter, R. & Trapido, M. CHEMICAL OXIDATION OF BIOLOGICALLY TREATED PHENOLIC EFFLUENTS. Waste Management 15, 203-208, doi:10.1016/0956-053x(95)00018-u (1995). 65Calleja, G., Melero, J. A., Martinez, F. & Molina, R. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Water Research 39, 1741-1750, doi:10.1016/j.watres.2005.02.013 (2005). 66Barrault, J. et al. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Applied Catalysis B-Environmental 27, L225-L230, doi:10.1016/s0926-3373(00)00170-3 (2000). 67Valange, S., Gabelica, Z., Abdellaoui, M., Clacens, J. M. & Barrault, J. Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol. Microporous and Mesoporous Materials 30, 177-185, doi:10.1016/s1387-1811(99)00031-1 (1999). 68Zazo, J. A., Casas, J. A., Mohedano, A. F., Gilarranz, M. A. & Rodriguez, J. J. Chemical pathway and kinetics of phenol oxidation by Fenton''s reagent. Environmental Science & Technology 39, 9295-9302, doi:10.1021/es050452h (2005). 69Yu, R. B. et al. Synthesis, characterization, and catalytic phenol hydroxylation of a novel complex oxide HxV2Zr2O9 center dot H2O. Catalysis Letters 49, 49-52, doi:10.1023/a:1019045003008 (1997). 70Notari, B. TITANIUM SILICALITES. Catalysis Today 18, 163-172, doi:10.1016/0920-5861(93)85029-y (1993). 71Dai, P. S. E., Petty, R. H., Ingram, C. W. & Szostak, R. Metal substituted aluminophosphate molecular sieves as phenol hydroxylation catalysts. Applied Catalysis a-General 143, 101-110, doi:10.1016/0926-860x(96)00073-7 (1996). 72Qi, X. Y., Zhang, L. L., Xie, W. H., Ji, T. H. & Li, R. G. Synthesis of copper-substituted aluminophosphate molecular sieves (CuAPO-11) and their catalytic behavior for phenol hydroxylation. Applied Catalysis a-General 276, 89-94, doi:10.1016/j.apcata.2004.07.043 (2004). 73Villa, A. L., Caro, C. A. & de Correa, C. M. Cu- and Fe-ZSM-5 as catalysts for phenol hydroxylation. Journal of Molecular Catalysis a-Chemical 228, 233-240, doi:10.1016/j.molcata.2004.09.035 (2005). 74Lou, L. L. & Liu, S. X. CuO-containing MCM-48 as catalysts for phenol hydroxylation. Catalysis Communications 6, 762-765, doi:10.1016/j.catcom.2005.07.004 (2005). 75Zhang, G. et al. Catalytic Role of Cu Sites of Cu/MCM-41 in Phenol Hydroxylation. Langmuir 26, 1362-1371, doi:10.1021/la902436s (2010). 76Fu, Z. H. et al. Highly effective Cu-HMS catalyst for hydroxylation of phenol. Catalysis Letters 66, 105-108, doi:10.1023/a:1019018816599 (2000). 77Wang, L. P. et al. Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. Journal of Molecular Catalysis a-Chemical 230, 143-150, doi:10.1016/j.molcata.2004.12.027 (2005). 78Naiko, G. A., Dar, R. A. & Khan, F. Hierarchically macro/mesostructured porous copper oxide: facile synthesis, characterization, catalytic performance and electrochemical study of mesoporous copper oxide monoliths. Journal of Materials Chemistry A 2, 11792-11798, doi:10.1039/c3ta14977c (2014). 79Acharyya, S. S., Ghosh, S., Adak, S., Sasaki, T. & Bal, R. Facile synthesis of CuCr2O4 spinel nanoparticles: a recyclable heterogeneous catalyst for the one pot hydroxylation of benzene. Catalysis Science & Technology 4, 4232-4241, doi:10.1039/c4cy00615a (2014).
|