跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃昱源
研究生(外文):Yu-Yuan Huang
論文名稱:同步合成之含鉻金屬有機框架(Cr-MOF-199)及其孔洞衍生氧化銅/亞鉻酸銅複合物應用於提升酚羥化反應
論文名稱(外文):De novo synthesis of Cr-embedded MOF-199 and derived CuCr2O4/CuO porous composites for enhanced phenol hydroxylation
指導教授:吳嘉文吳嘉文引用關係
口試委員:陳俊維米澤徹溫政彥張瑋辰
口試委員(外文):Tetsu Yonezawa
口試日期:2016-05-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:98
中文關鍵詞:原位合成法金屬有機框架氧化銅亞鉻酸銅酚羥化金屬有機框架衍生複合物
外文關鍵詞:de novo synthesismetal organic frameworkscopper oxidecopper chromitephenol hydroxylationMOF-derived composites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是應用原位合成法(De novo synthesis)合成具孔洞之氧化銅/亞鉻酸銅複合物(CuCr2O4/CuO)應用於提升酚羥化 (hydroxylation)反應之選擇性。為了設計雙金屬固體催化劑,含銅之金屬有機框架(MOF-199)被選為裝載活性物質鉻之載體,並經由原位合成法同時組合鉻及載體。此鉻嵌入之金屬有機框架(Cr-MOF-199)被進一步燒成氧化銅/亞鉻酸銅複合物。此樣品並經由X光繞射(XRD)、掃描式電子顯微鏡(SEM)、穿隧式電子顯微鏡(TEM)及氮氣吸脫附進行分析。結果顯示,我們成功將鉻離子均勻嵌入金屬有機框架之中,其構型並隨著鉻含量的增加由八面體轉變為立方體。此具有孔洞之氧化銅/亞鉻酸銅複合物被進一步應用於酚羥化反應,並在最佳條件下有40%之二酚(diphenols)產率(包含鄰苯二酚及對苯二酚)。值得一提的是,由於亞鉻酸銅的存在,鄰苯二酚(catechol)及對苯二酚(hdroquinone)之間的選擇性(catechol/hydroquinone)由1.3增加至1.8。此應用氧化銅/亞鉻酸銅複合物提升酚羥化反應選擇性提供了金屬有機框架衍生觸媒(MOF-derived catalysts)全新的應用。

The purpose of this study is to synthesize porous copper chromite/copper oxide (CuCr2O4/CuO) composites by a de novo synthesis of Cr-doped metal organic framework (MOF) as effective catalysts for phenol hydroxylation with enhanced selectivity. To desgin and synthesize a bimetallic solid catalyst, MOF-199 with copper source was chosen as the support for incorporating active species (i.e. Cr) through a de novo synthesis route, i.e. chromium ions were encapsulated into MOF-199 simultaneously upon the formation of the MOF-199 framework. The obtained Cr-MOF-199 samples were further calcined to convert into CuCr2O4/CuO composites that were characterized with XRD, SEM, TEM, and nitrogen sorption. The results showed that chromium ions were successfully embedded in the structure of MOF-199 uniformly, and the morphology of Cr-MOF-199 was changed from octahedral to cubic when chromium content was increased. The obtained porous CuCr2O4/CuO composites were further applied in phenol hydroxylation, and the results showed a high yield of 40% for diphenols (including hydroquinone and catechol) in optimized reaction conditions. It is worth of noting that the ratio of catechol/hydroquinone was enhanced from 1.3 to 1.8 with the existence of our synthesized CuCr2O4/CuO composites. The enhanced selectivity of catechol in phenol hydroxylation catalyzed by our newly synthesized CuCr2O4/CuO composites would provide a new application of MOF-derived catalysts.

1. Introduction 1
2. Literature review 4
2.1. Support design 4
2.1.1. porous materials 4
2.1.2. metal organic frameworks (MOFs) 5
2.1.3. MOF-derived materials 7
2.2. Catalyst preparation 12
2.2.1. MOF composites31 12
2.2.2. post synthesis 14
2.2.3. in situ synthesis (de novo synthesis) 17
2.3. Catalysts for phenol hydroxylation 21
2.3.1. catalytic wet peroxide oxidation (CWPO) 21
2.3.2. phenol hydroxylation 22
3. Objectives 24
4. Experimental 26
4.1. Chemicals and materials 26
4.2. Equipments 26
4.3. Preparation of catalysts 27
4.3.1. Synthesis of MOF-199 27
4.3.2. De novo synthesis of Cr-MOF-199 28
4.3.3. MOF-derived catalyst by calcination 30
4.4. Hydroxylation reaction of phenol 33
4.4.2. Effectiveness of catalyst 37
4.5. Characterization of products 38
4.5.1. X-ray diffractometer (XRD) 38
4.5.2. Scanning electron microscope (SEM) 38
4.5.3. Energy dispersive spectroscopy (EDS) 38
4.5.4. Focused Ion Beam and Electron Beam System (FIB) 38
4.5.5. Scanning transmission electron microscope (STEM) 39
4.5.6. Energy-Dispersive X-Ray Fluorescence Spectrometer (XRF) 39
4.5.7. Inducyively Coupled Plasma-Mass Spectrometer (ICP/MS) 39
4.5.8. X-ray Photoelectron Spectroscopy (XPS) 39
4.5.9. Fourier Transform Infrared Spectrometer (FTIR) 40
4.5.10. Specific Surface Area & Pore Size Distribution Analyzer 40
4.5.11. Thermogravimetry/differential thermal analysis thermoanalyzer (TG-DTA) 40
4.5.12. High performance liquid chromatography (HPLC) 41
4.6. Analysis of reactions 41
5. Results and Discussions 42
5.1 Materials Characterizations 42
5.1.1 MOF-199 synthesis 42
5.1.2 Effect of embedded chromium 44
5.1.3 Effect of calcination 49
5.1.4 Effect of calcination temperature 62
5.1.5. Effect of synthetic temperature 70
5.2 Phenol Hydroxylation 74
5.2.1 Reaction optimization 74
5.2.2 Catalytic performance 82
6. Conclusion 87
7. Future Prospect 88
8. Reference 89
Appendix 96
A.1 ICP calibration curve of copper and chromium 96
A.2 calibration curve 97

1Sabo, M., Henschel, A., Froede, H., Klemm, E. & Kaskel, S. Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry 17, 3827-3832, doi:10.1039/b706432b (2007).
2Liu, H., Li, Y., Luque, R. & Jiang, H. A Tuneable Bifunctional Water-Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. Advanced Synthesis & Catalysis 353, 3107-3113, doi:10.1002/adsc.201100479 (2011).
3Opelt, S. et al. Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst. Catalysis Communications 9, 1286-1290, doi:10.1016/j.catcom.2007.11.019 (2008).
4Zhang, M. et al. Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. Catalysis Letters 142, 313-318, doi:10.1007/s10562-012-0767-7 (2012).
5Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angewandte Chemie-International Edition 47, 4144-4148, doi:10.1002/anie.200705998 (2008).
6Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G. & Fischer, R. A. Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials 22, 6393-6401, doi:10.1021/cm102529c (2010).
7Ishida, T., Kawakita, N., Akita, T. & Haruta, M. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bulletin 42, 267-274 (2009).
8Liao, Y.-T. et al. DeNovo Synthesis of Gold-Nanoparticle-Embedded, Nitrogen-Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability. Chemcatchem 8, 502-509, doi:10.1002/cctc.201501020 (2016).
9White, R. J., Luque, R., Budarin, V. L., Clark, J. H. & Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews 38, 481-494, doi:10.1039/b802654h (2009).
10Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews 97, 2373-2419, doi:10.1021/cr960406n (1997).
11Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813-821, doi:10.1038/nature00785 (2002).
12Banerjee, A. et al. MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. Journal of Materials Chemistry 22, 19694-19699, doi:10.1039/c2jm33798c (2012).
13Banerjee, A., Singh, U., Aravindan, V., Srinivasan, M. & Ogale, S. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOE-199) for application as anode for Li-ion batteries. Nano Energy 2, 1158-1163, doi:10.1016/j.nanoen.2013.04.008 (2013).
14Horcajada, P. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials 9, 172-178, doi:10.1038/nmat2608 (2010).
15Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Advanced Materials 18, 2073-2094, doi:10.1002/adma.200501576 (2006).
16Buijnsters, J. G., Zhong, R., Tsyntsaru, N. & Celis, J. P. Surface Wettability of Macroporous Anodized Aluminum Oxide. Acs Applied Materials & Interfaces 5, 3224-3233, doi:10.1021/am4001425 (2013).
17Beck, J. S. et al. A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES. Journal of the American Chemical Society 114, 10834-10843, doi:10.1021/ja00053a020 (1992).
18Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. M. ALUMINOPHOSPHATE MOLECULAR-SIEVES - A NEW CLASS OF MICROPOROUS CRYSTALLINE INORGANIC SOLIDS. Journal of the American Chemical Society 104, 1146-1147, doi:10.1021/ja00368a062 (1982).
19Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angewandte Chemie-International Edition 43, 2334-2375, doi:10.1002/anie.200300610 (2004).
20Liu, J. W. et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews 43, 6011-6061, doi:10.1039/c4cs00094c (2014).
21Furukawa, H., Cordova, K. E., O''Keeffe, M. & Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 974-+, doi:10.1126/science.1230444 (2013).
22Furukawa, H. et al. Ultrahigh Porosity in Metal-Organic Frameworks. Science 329, 424-428, doi:10.1126/science.1192160 (2010).
23Lu, W. G. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chemical Society Reviews 43, 5561-5593, doi:10.1039/c4cs00003j (2014).
24Kaye, S. S., Dailly, A., Yaghi, O. M. & Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3) (MOF-5). Journal of the American Chemical Society 129, 14176-+, doi:10.1021/ja076877g (2007).
25Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews 38, 1477-1504, doi:10.1039/b802426j (2009).
26An, J., Geib, S. J. & Rosi, N. L. Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework. Journal of the American Chemical Society 131, 8376-+, doi:10.1021/ja902972w (2009).
27Hu, Z., Deibert, B. J. & Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews 43, 5815-5840, doi:10.1039/c4cs00010b (2014).
28Lee, J. et al. Metal-organic framework materials as catalysts. Chemical Society Reviews 38, 1450-1459, doi:10.1039/b807080f (2009).
29Dhakshinamoorthy, A., Alvaro, M., Corma, A. & Garcia, H. Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions 40, 6344-6360, doi:10.1039/c1dt10354g (2011).
30Yang, S. J. et al. MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity. Chemistry of Materials 24, 464-470, doi:10.1021/cm202554j (2012).
31Zhu, Q. L. & Xu, Q. Metal-organic framework composites. Chemical Society Reviews 43, 5468-5512, doi:10.1039/c3cs60472a (2014).
32Li, C. et al. Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A 3, 5585-5591, doi:10.1039/c4ta06914e (2015).
33Yang, S. J., Im, J. H., Kim, T., Lee, K. & Park, C. R. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. Journal of Hazardous Materials 186, 376-382, doi:10.1016/j.jhazmat.2010.11.019 (2011).
34Wang, X. J. et al. MOF derived catalysts for electrochemical oxygen reduction. Journal of Materials Chemistry A 2, 14064-14070, doi:10.1039/c4ta01506a (2014).
35Chaikittisilp, W., Ariga, K. & Yamauchi, Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. Journal of Materials Chemistry A 1, 14-19, doi:10.1039/c2ta00278g (2013).
36Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Journal of Physical Chemistry B 106, 7729-7744, doi:10.1021/jp0209289 (2002).
37Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 1, 482-501, doi:10.1002/smll.200500006 (2005).
38Toshima, N. & Yonezawa, T. Bimetallic nanoparticles - novel materials for chemical and physical applications. New Journal of Chemistry 22, 1179-1201, doi:10.1039/a805753b (1998).
39Meilikhov, M. et al. Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 3701-3714, doi:10.1002/ejic.201000473 (2010).
40Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T. & Xu, Q. Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. Journal of the American Chemical Society 133, 11822-11825, doi:10.1021/ja200122f (2011).
41Horiuchi, Y. et al. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal-Organic Framework. Journal of Physical Chemistry C 116, 20848-20853, doi:10.1021/jp3046005 (2012).
42Jiang, H.-L. et al. Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal-Organic Framework. Journal of the American Chemical Society 131, 11302-+, doi:10.1021/ja9047653 (2009).
43Dhakshinamoorthy, A. & Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chemical Society Reviews 41, 5262-5284, doi:10.1039/c2cs35047e (2012).
44Park, Y. K. et al. Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chemical Communications 46, 3086-3088, doi:10.1039/c000775g (2010).
45Sun, Z., Li, G., Liu, L. & Liu, H.-o. Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol. Catalysis Communications 27, 200-205, doi:10.1016/j.catcom.2012.07.017 (2012).
46Zhang, T. et al. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. Chemical Engineering Journal 228, 398-404, doi:10.1016/j.cej.2013.05.020 (2013).
47Bagheri, A. et al. Synthesis and characterization of magnetic metal-organic framework (MOF) as a novel sorbent, and its optimization by experimental design methodology for determination of palladium in environmental samples. Talanta 99, 132-139, doi:10.1016/j.talanta.2012.05.030 (2012).
48Zhan, W.-w. et al. Semiconductor@Metal-Organic Framework Core-Shell Heterostructures: A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response. Journal of the American Chemical Society 135, 1926-1933, doi:10.1021/ja311085e (2013).
49Zhao, H. H., Song, H. L., Xu, L. L. & Chou, L. J. Isobutane dehydrogenation over the mesoporous Cr2O3/Al2O3 catalysts synthesized from a metal-organic framework MIL-101. Applied Catalysis a-General 456, 188-196, doi:10.1016/j.apcata.2013.02.018 (2013).
50Zlotea, C. et al. Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. Journal of the American Chemical Society 132, 2991-2997, doi:10.1021/ja9084995 (2010).
51Jiang, H.-L., Akita, T., Ishida, T., Haruta, M. & Xu, Q. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework. Journal of the American Chemical Society 133, 1304-1306, doi:10.1021/ja1099006 (2011).
52Vimont, A. et al. Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. Journal of the American Chemical Society 128, 3218-3227, doi:10.1021/ja056906s (2006).
53Li, P.-Z., Aranishi, K. & Xu, Q. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chemical Communications 48, 3173-3175, doi:10.1039/c2cc17302f (2012).
54Hermes, S. et al. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie-International Edition 44, 6237-6241, doi:10.1002/anie.200462515 (2005).
55Schroeder, F. et al. Ruthenium nanoparticles inside porous Zn4O(bdC)(3) by hydrogenolysis of adsorbed Ru(cod)(cot) : A solid-state reference system for surfactant-stabilized ruthenium colloids. Journal of the American Chemical Society 130, 6119-6130, doi:10.1021/ja078231u (2008).
56Ishida, T., Nagaoka, M., Akita, T. & Haruta, M. Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols. Chemistry-a European Journal 14, 8456-8460, doi:10.1002/chem.200800980 (2008).
57Lu, G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chemistry 4, 310-316, doi:10.1038/nchem.1272 (2012).
58Sugikawa, K., Furukawa, Y. & Sada, K. SERS-Active Metal-Organic Frameworks Embedding Gold Nanorods. Chemistry of Materials 23, 3132-3134, doi:10.1021/cm200737c (2011).
59Wang, P. et al. Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chemical Communications 49, 3330-3332, doi:10.1039/c3cc39275a (2013).
60Kujawski, W. et al. Removal of phenol from wastewater by different separation techniques. Desalination 163, 287-296, doi:10.1016/s0011-9164(04)90202-0 (2004).
61Bhargava, S. K. et al. Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research 45, 1221-1258, doi:10.1021/ie051059n (2006).
62Chedeville, O., Debaccq, M., Almanza, M. F. & Porte, C. Use of an ejector for phenol containing water treatment by ozonation. Separation and Purification Technology 57, 201-208, doi:10.1016/j.seppur.2007.04.004 (2007).
63Neyens, E. & Baeyens, J. A review of classic Fenton''s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials 98, 33-50, doi:10.1016/s0304-3894(02)00282-0 (2003).
64Kamenev, S., Kallas, J., Munter, R. & Trapido, M. CHEMICAL OXIDATION OF BIOLOGICALLY TREATED PHENOLIC EFFLUENTS. Waste Management 15, 203-208, doi:10.1016/0956-053x(95)00018-u (1995).
65Calleja, G., Melero, J. A., Martinez, F. & Molina, R. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Water Research 39, 1741-1750, doi:10.1016/j.watres.2005.02.013 (2005).
66Barrault, J. et al. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Applied Catalysis B-Environmental 27, L225-L230, doi:10.1016/s0926-3373(00)00170-3 (2000).
67Valange, S., Gabelica, Z., Abdellaoui, M., Clacens, J. M. & Barrault, J. Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol. Microporous and Mesoporous Materials 30, 177-185, doi:10.1016/s1387-1811(99)00031-1 (1999).
68Zazo, J. A., Casas, J. A., Mohedano, A. F., Gilarranz, M. A. & Rodriguez, J. J. Chemical pathway and kinetics of phenol oxidation by Fenton''s reagent. Environmental Science & Technology 39, 9295-9302, doi:10.1021/es050452h (2005).
69Yu, R. B. et al. Synthesis, characterization, and catalytic phenol hydroxylation of a novel complex oxide HxV2Zr2O9 center dot H2O. Catalysis Letters 49, 49-52, doi:10.1023/a:1019045003008 (1997).
70Notari, B. TITANIUM SILICALITES. Catalysis Today 18, 163-172, doi:10.1016/0920-5861(93)85029-y (1993).
71Dai, P. S. E., Petty, R. H., Ingram, C. W. & Szostak, R. Metal substituted aluminophosphate molecular sieves as phenol hydroxylation catalysts. Applied Catalysis a-General 143, 101-110, doi:10.1016/0926-860x(96)00073-7 (1996).
72Qi, X. Y., Zhang, L. L., Xie, W. H., Ji, T. H. & Li, R. G. Synthesis of copper-substituted aluminophosphate molecular sieves (CuAPO-11) and their catalytic behavior for phenol hydroxylation. Applied Catalysis a-General 276, 89-94, doi:10.1016/j.apcata.2004.07.043 (2004).
73Villa, A. L., Caro, C. A. & de Correa, C. M. Cu- and Fe-ZSM-5 as catalysts for phenol hydroxylation. Journal of Molecular Catalysis a-Chemical 228, 233-240, doi:10.1016/j.molcata.2004.09.035 (2005).
74Lou, L. L. & Liu, S. X. CuO-containing MCM-48 as catalysts for phenol hydroxylation. Catalysis Communications 6, 762-765, doi:10.1016/j.catcom.2005.07.004 (2005).
75Zhang, G. et al. Catalytic Role of Cu Sites of Cu/MCM-41 in Phenol Hydroxylation. Langmuir 26, 1362-1371, doi:10.1021/la902436s (2010).
76Fu, Z. H. et al. Highly effective Cu-HMS catalyst for hydroxylation of phenol. Catalysis Letters 66, 105-108, doi:10.1023/a:1019018816599 (2000).
77Wang, L. P. et al. Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. Journal of Molecular Catalysis a-Chemical 230, 143-150, doi:10.1016/j.molcata.2004.12.027 (2005).
78Naiko, G. A., Dar, R. A. & Khan, F. Hierarchically macro/mesostructured porous copper oxide: facile synthesis, characterization, catalytic performance and electrochemical study of mesoporous copper oxide monoliths. Journal of Materials Chemistry A 2, 11792-11798, doi:10.1039/c3ta14977c (2014).
79Acharyya, S. S., Ghosh, S., Adak, S., Sasaki, T. & Bal, R. Facile synthesis of CuCr2O4 spinel nanoparticles: a recyclable heterogeneous catalyst for the one pot hydroxylation of benzene. Catalysis Science & Technology 4, 4232-4241, doi:10.1039/c4cy00615a (2014).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊