(3.227.235.183) 您好!臺灣時間:2021/04/13 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張瑋倫
研究生(外文):Wei-Lun Chang
論文名稱:利用液液分相輔助共沸物分離之蒸餾程序的設計與控制
論文名稱(外文):Design and Control of Distillation Processes to Separate Azeotropic Mixtures Aided by Liquid-Liquid Separation
指導教授:錢義隆
指導教授(外文):I-Lung Chien
口試委員:陳誠亮吳哲夫汪上曉鄭西顯
口試委員(外文):Cheng-Liang ChenJeffrey D. WardDavid Shan-Hill WongShi-Shang Jang
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:程序設計與控制共沸物分離複合分離程序蒸餾萃取甲基丙烯酸甲酯正丙醇
外文關鍵詞:Process Design and ControlAzeotropic SeparationHybrid Separation ProcessDistillationExtractionMethyl Methacrylaten-Propanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究共分兩部份:一為分離含有甲基丙烯酸甲酯、甲醇與水的混合物之程序,另一部份為萃取/蒸餾複合程序的深入研究,並以正丙醇去水作實例研究。
第一部份中,在使用與原始雙塔設計相同的程序單元、但不同設計架構之下,本研究對一種節能雙塔設計用來分離含有甲基丙基酸甲酯、甲醇與水的混合物進行詳細的研究,藉由設計常規蒸餾塔的塔頂及塔底組成分別於系統的不穩定及穩定節點上,結果顯示相較於原始雙塔設計將塔底設計在系統之鞍點,蒸汽成本可大幅節省16.3%,而此節能雙塔設計另一項好處為隨著純水物流而出的甲基丙基酸甲酯產物損失亦比原始設計少,代表著額外9.6%的操作成本節省。再者,本研究同時考慮開環路與閉環路敏感度測試的結果,創新提出此節能設計的整廠控制架構,藉由控制常規蒸餾塔中兩塔板的溫度差以及汽提塔中另一個單點板溫控制,無論在新鮮進料流量或組成發生巨大改變之下,甲基丙烯酸甲酯與水產物皆能維持在高純度。
本研究另一部份中是關於萃取/蒸餾複合程序的充份研究,藉由結合液-液分離以及蒸餾的技術,此複合系統可視為非均勻相共沸蒸餾的衍生型程序,而實行萃取/蒸餾複合程序所帶來巨大的節能潛力將以概念簡介與正丙醇去水的實例來作說明。考慮其合適的密度、汽化熱、低毒性,異丙醚被選為實例中的萃取溶劑;與萃取蒸餾系統相比,透過此複合程序,在最佳的溶劑流量之下,再沸器熱負載可大幅減少64.09%。再者,同時考慮開環路與閉環路敏感度測試的結果下,本研究提出一種創新的控制架構,藉由一個在動態控制期間可調動的溶劑流量,可允許程序操作在最適化的穩態點,而動態模擬結果顯示無論在新鮮進料流量或組成發生巨大改變之下,正丙醇與水產物皆能維持在高純度。


This work is divided into two parts. One is the separation of a mixture including methyl methacrylate, methanol, and water. The other is the investigation into hybrid extraction−distillation process with a case study of n-propanol dehydration.
In the first part, an energy-saving design for the separation of a mixture including methyl methacrylate, methanol, and water is investigated as compared to a previous two-column design using the same process units but different configurations. In this energy-saving design, top and bottoms products of the regular distillation column are designed to be at unstable and stable nodes, respectively. Thus, results show that significant savings in the steam cost (16.3%) can be realized as opposed to the previous design of placing the bottom product at a saddle point. Another benefit is that the loss of methyl methacrylate product through the water outlet stream is also less than that of the previous design, representing another 9.6% savings of the operating cost for this energy-saving design. Furthermore, an overall control structure for this proposed design is also devised based on a novel way of using open-loop and closed-loop sensitivity tests. By the control of a temperature difference at two trays of the regular distillation column and another single-tray temperature at the stripper, both MMA and water products can be maintained at high purities despite large variations in feed flow rate and feed composition changes.
In the second part, hybrid extraction−distillation separation system, which is a process combining the techniques of liquid-liquid separation and also distillation, is well investigated. This hybrid system can be viewed as a derivative from heterogeneous azeotropic distillation method. In this work, the potential for significant energy-saving via this hybrid process is demonstrated with both conceptual illustration and a case study of n-propanol dehydration. Diisopropyl ether (DIPE) is selected as the extraction solvent considering its favorable properties of density, heat of vaporization, and less toxicity. With the optimized solvent flow rate via this process, significant saving on reboiler duty (64.09%) can be realized compared to an extractive distillation system. Furthermore, a novel control strategy is proposed based on closed-loop and open-loop sensitivity tests. Here, an adjustable solvent flow rate during dynamic control allows the operation at the optimal steady-state condition. Dynamic simulation results show that both n-propanol and water products can still be maintained at high-purities despite large variations in feed flow rate and feed composition changes.


目錄

誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XI

1. 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 甲基丙烯酸甲酯分離系統 2
1.2.2 正丙醇去水系統 5
1.3 研究動機 8
1.4 組織架構 9

2. 甲基丙烯酸甲酯分離系統 11
2.1 前言 11
2.2 熱力學模型 12
2.3 節能雙塔設計流程 15
2.3.1 穩態設計、經濟評估與比較 15
2.3.2 常規蒸餾塔C-1的塔內液相組成分佈 22
2.4 節能雙塔設計流程之控制 25
2.4.1 引言 25
2.4.2 儲量控制環路 26
2.4.3 品質控制環路的選擇 27
2.4.4 干擾排除測試 37

3. 正丙醇去水系統 41
3.1 前言 41
3.2 熱力學模型及溶劑選擇 42
3.3 萃取/蒸餾複合程序之設計 47
3.3.1 萃取/蒸餾複合程序之概念簡介 47
3.3.1.1 非均勻相共沸蒸餾之衍生型程序 48
3.3.1.2 萃取/蒸餾複合程序之節能潛力 52
3.3.2 萃取/蒸餾複合程序之穩態模擬 60
3.3.2.1 穩態設計、結果與比較 60
3.3.2.2 最佳操作之延伸探討 66
3.4 萃取/蒸餾複合程序之控制 69
3.4.1 引言 69
3.4.2 儲量控制環路 70
3.4.3 品質控制環路的選擇 71
3.4.4 干擾排除測試 78

4. 結論 83
4.1 甲基丙烯酸甲酯分離系統 83
4.2 正丙醇去水系統 84

參考文獻 85
附錄 89


[1]Luyben, W. L., Economic Optimum Design of the Heterogeneous Azeotropic Dehydration of Ethanol. Ind. Eng. Chem. Res. 2012, 51, 16427-16432.

[2]Pla-Franco, J.; Lladosa, E.; Loras, S.; Montón, J. B., Thermodynamic Analysis and Process Simulation of Ethanol Dehydration via Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 2014, 53, 6084-6093.

[3]Yu, H.; Ye, Q.; Xu, H.; Dai, X.; Suo, X.; Li, R., Comparison of alternative distillation processes for the maximum-boiling ethylenediamine dehydration system. Chem. Eng. Process. 2015, 97, 84-105.

[4]Chien, I. L.; Zeng, K. L.; Chao, H. Y.; Liu, J. H., Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation. Chem. Eng. Sci. 2004, 59, 4547-4567.

[5]Wang, S. J.; Huang, K., Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation using p-xylene as an entrainer. Chem. Eng. Process. 2012, 60, 65-76.

[6]Sun, L. Y.; Chang, X. W.; Zhang, Y. M.; Li, J.; Li, Q. S., Reducing Energy Consumption and CO2 Emissions in Thermally Coupled Azeotropic Distillation. Chem. Eng. Technol. 2010, 33, 395-404.

[7]Wu, Y. C.; Huang, H. P.; Chien, I. L., Investigation of the Energy-Saving Design of an Industrial 1,4-Dioxane Dehydration Process with Light Feed Impurity. Ind. Eng. Chem. Res. 2014, 53, 15667-15685.

[8]Wu, Y. C.; Lee, H. Y.; Huang, H. P.; Chien, I. L., Energy-Saving Dividing-Wall Column Design and Control for Heterogeneous Azeotropic Distillation Systems. Ind. Eng. Chem. Res. 2014, 53, 1537-1552.

[9]Wang, S. J.; Chen, W. Y.; Chang, W. T.; Hu, C. C.; Cheng, S. H., Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns. Chem. Eng. Process. 2014, 85, 108-124.

[10]Yu, H.; Ye, Q.; Xu, H.; Zhang, H.; Dai, X., Design and Control of Dividing-Wall Column for tert-Butanol Dehydration System via Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 2015, 54, 3384-3397.

[11]Liu, Y.; Zhai, J.; Li, L.; Sun, L.; Zhai, C., Heat pump assisted reactive and azeotropic distillations in dividing wall columns. Chem. Eng. Process. 2015, 95, 289-301.

[12]Shi, L.; Huang, K.; Wang, S. J.; Yu, J.; Yuan, Y.; Chen, H.; Wong, S. H., Application of Vapor Recompression to Heterogeneous Azeotropic Dividing-Wall Distillation Columns. Ind. Eng. Chem. Res. 2015, 54, 11592-11609.

[13]Kürüm, S.; Fonyo, Z.; Kut, Ö. M., Design Strategy for Acetic Acid Recovery. Chem. Eng. Commun. 1995, 136, 161-176.

[14]Chen, Y. C.; Li, K. L.; Chen, C. L.; Chien, I. L., Design and Control of a Hybrid Extraction–Distillation System for the Separation of Pyridine and Water. Ind. Eng. Chem. Res. 2015, 54, 7715-7727.

[15]吳義章, 各類非均勻相共沸蒸餾系統及隔牆塔製程之設計與控制. 博士論文, 國立國立臺灣大學化學工程學研究所, 2014.

[16]Wu, Y. C.; Hsu, C. S.; Huang, H. P.; Chien, I. L., Design and Control of a Methyl Methacrylate Separation Process with a Middle Decanter. Ind. Eng. Chem. Res. 2011, 50, 4595-4607.

[17]Croom, C. J. W. Production of esters of methacrylic acid. U.S. Patent 2,056,771, 1936.

[18]Pai, V. K.; Hyman, D.; Witheford, J. M. Process for the production of methyl methacrylate. U.S. Patent 3,821,286, 1974.

[19]Higuchi, H.; Kida, K. Process for producing methyl methacrylate. U.S. Patent 5,087,736, 1992.

[20]Nagai, K., New developments in the production of methyl methacrylate. Appl. Catal., A 2001, 221, 367-377.

[21]Sugiyama, H.; Fischer, U.; Hungerbühler, K.; Hirao, M., Decision framework for chemical process design including different stages of environmental, health, and safety assessment. AIChE J. 2008, 54, 1037-1053.

[22]Mahdi, T.; Ahmad, A.; Nasef, M. M.; Ripin, A., State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2015, 44, 308-330.

[23]Errico, M.; Sanchez-Ramirez, E.; Quiroz-Ramìrez, J. J.; Segovia-Hernandez, J. G.; Rong, B.-G., Synthesis and design of new hybrid configurations for biobutanol purification. Comput. Chem. Eng. 2016, 84, 482-492.

[24]Pereiro, A. B.; Araújo, J. M. M.; Esperança, J. M. S. S.; Marrucho, I. M.; Rebelo, L. P. N., Ionic liquids in separations of azeotropic systems – A review. J. Chem. Thermodyn. 2012, 46, 2-28.

[25]An, Y.; Li, W.; Li, Y.; Huang, S.; Ma, J.; Shen, C.; Xu, C., Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column. Chem. Eng. Sci. 2015, 135, 166-178.

[26]Pla-Franco, J.; Lladosa, E.; Loras, S.; Montón, J. B., Approach to the 1-propanol dehydration using an extractive distillation process with ethylene glycol. Chem. Eng. Process. 2015, 91, 121-129.

[27]Pla-Franco, J.; Lladosa, E.; Loras, S.; Montón, J. B., Isobaric Vapor–Liquid–Liquid Equilibria for the Ternary Systems Ethanol + Water + Propyl Acetate and 1-Propanol + Water + Propyl acetate. J. Chem. Eng. Data 2014, 59, 2054-2064.

[28]Pla-Franco, J.; Lladosa, E.; Montón, J. B.; Loras, S., Evaluation of the 2-Methoxyethanol as Entrainer in Ethanol–Water and 1-Propanol–Water Mixtures. J. Chem. Eng. Data 2013, 58, 3504-3512.

[29]Lee, L. S.; Shen, H. C., Azeotropic Behavior of a Water + n-Propanol + Cyclohexane Mixture Using Cyclohexane as an Entrainer for Separating the Water + n-Proponal Mixture at 760 mmHg. Ind. Eng. Chem. Res. 2003, 42, 5905-5914.

[30]Pienaar, C.; Schwarz, C. E.; Knoetze, J. H.; Burger, A. J., Vapor–Liquid–Liquid Equilibria Measurements for the Dehydration of Ethanol, Isopropanol, and n-Propanol via Azeotropic Distillation Using DIPE and Isooctane as Entrainers. J. Chem. Eng. Data 2013, 58, 537-550.

[31]Orchillés, A. V.; Miguel, P. J.; Vercher, E.; Martínez-Andreu, A., Isobaric Vapor−Liquid Equilibria for 1-Propanol + Water + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. J. Chem. Eng. Data 2008, 53, 2426-2431.

[32]Luyben, W. L., Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Comput. Chem. Eng. 2013, 50, 1-7.

[33]Luyben, W. L.; Chien, I. L. Design and Control of Distillation Systems for Separating Azeotropes. Wiley: Hoboken, NJ, 2010.

[34]Tyreus, B. D.; Luyben, W. L., Tuning PI controllers for integrator/dead time processes. Ind. Eng. Chem. Res. 1992, 31, 2625-2628.

[35]Gmehling, J.; Möllmann, C., Synthesis of Distillation Processes Using Thermodynamic Models and the Dortmund Data Bank. Ind. Eng. Chem. Res. 1998, 37, 3112-3123.

[36]Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S. Product and Process Design Principles Synthesis, Analysis, and Evaluation. Wiley: Hoboken, NJ, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔