|
[1] Jana, A. K., Heat integrated distillation operation. Applied Energy. 2010, 87, (5), 1477-1494. [2] Julka, V.; Chiplunkar, M.; O''Young, L., Selecting entrainers for azeotropic distillation. Chemical Engineering Progress. 2009, 105, (3), 47-53. [3] Kister, H. Z., Distillation design. McGraw-Hill New York: 1992; Vol. 223. [4] Doherty, M. F.; Malone, M. F., Conceptual design of distillation systems. McGraw-Hill Science/Engineering/Math: 2001. [5] Petlyuk, F. B., Distillation theory and its application to optimal design of separation units. Cambridge University Press: 2004. [6] Luyben, W. L.; Chien, I.-L., Design and control of distillation systems for separating azeotropes. John Wiley & Sons: 2011. [7] Luyben, W. L., Distillation design and control using Aspen simulation. John Wiley & Sons: 2013. [8] Sandler, S. I., Using Aspen Plus in thermodynamics instruction: a step-by-step guide. John Wiley & Sons: 2015. [9] Lem, K.-W.; Curran, S. A.; Sund, S.; Gabriel, M., Encyclopedia of chemical processing. Taylor & Francis: 2006. [10] Welch, V. A., Cascade reboiling of ethylbenzene/styrene columns. In Google Patents: 2001. [11] Luyben, W. L., Design and control of the styrene process. Industrial & Engineering Chemistry Research. 2010, 50, (3), 1231-1246. [12] Vasudevan, S.; Rangaiah, G.; Konda, N. M.; Tay, W. H., Application and evaluation of three methodologies for plantwide control of the styrene monomer plant. Industrial & Engineering Chemistry Research. 2009, 48, (24), 10941-10961. [13] Jongmans, M. T.; Hermens, E.; Raijmakers, M.; Maassen, J. I.; Schuur, B.; de Haan, A. B., Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation. Chemical Engineering Research and Design. 2012, 90, (12), 2086-2100. [14] Jongmans, M. T.; Schuur, B.; de Haan, A. B., Ionic liquid screening for ethylbenzene/styrene separation by extractive distillation. Industrial & Engineering Chemistry Research. 2011, 50, (18), 10800-10810. [15] Yu, J.; Shi, L.; Yuan, Y.; Chen, H.; Wang, S.; Huang, K., A Thermally Coupled Reactive Distillation System for the Separations of Cyclohexene/Cyclohexane Mixtures. Industrial & Engineering Chemistry Research. 2015. [16] Steyer, F.; Qi, Z.; Sundmacher, K., Synthesis of cylohexanol by three-phase reactive distillation: influence of kinetics on phase equilibria. Chemical Engineering Science. 2002, 57, (9), 1511-1520. [17] Marrufo, B.; Loras, S.; Lladosa, E., Phase equilibria involved in the extractive distillation of cyclohexane+ cyclohexene using diethyl carbonate as an entrainer. Journal of Chemical & Engineering Data. 2011, 56, (12), 4790-4796. [18] Mi, W.; Tong, R.; Hua, C.; Yue, K.; Jia, D.; Lu, P.; Bai, F., Vapor–Liquid Equilibrium Data for Binary Systems of N, N-Dimethylacetamide with Cyclohexene, Cyclohexane, and Benzene Separately at Atmospheric Pressure. Journal of Chemical & Engineering Data. 2015, 60, (11), 3063-3068. [19] Vega, A.; Díez, F.; Esteban, R.; Coca, J., Solvent selection for cyclohexane-cyclohexene-benzene separation by extractive distillation using non-steady-state gas chromatography. Industrial & engineering chemistry research. 1997, 36, (3), 803-807. [20] Steyer, F.; Sundmacher, K., VLE and LLE data for the system cyclohexane+ cyclohexene+ water+ cyclohexanol. Journal of Chemical & Engineering Data. 2004, 49, (6), 1675-1681. [21] Gmehling, J.; Möllmann, C., Synthesis of distillation processes using thermodynamic models and the Dortmund data bank. Industrial & engineering chemistry research. 1998, 37, (8), 3112-3123. [22] Seider, W. D.; Seader, J. D.; Lewin, D. R., Product & Process Design Principles: Synthesis, Analysis and Evaluation. John Wiley & Sons: 2009. [23] Chiang, T. P.; Luyben, W. L., Comparison of energy consumption in five heat-integrated distillation configurations. Industrial & Engineering Chemistry Process Design and Development. 1983, 22, (2), 175-179. [24] Chiang, T. P.; Luyben, W. L., Comparison of the dynamic performances of three heat-integrated distillation configurations. Industrial & engineering chemistry research. 1988, 27, (1), 99-104. [25] Mah, R. S.; Nicholas, J., J; Wodnik, R. B., Distillation with secondary reflux and vaporization: a comparative evaluation. AIChE Journal. 1977, 23, (5), 651-658. [26] Fitzmorris, R.; Mah, R., Improving distillation column design using thermodynamic availability analysis. AIChE Journal. 1980, 26, (2), 265-273. [27] Nakaiwa, M.; Huang, K.; Owa, M.; Akiya, T.; Nakane, T.; Sato, M.; Takamatsu, T., Energy savings in heat-integrated distillation columns. Energy. 1997, 22, (6), 621-625. [28] Nakaiwa, M.; Huang, K.; Owa, M.; Akiya, T.; Nakane, T.; Sato, M.; Takamatsu, T.; Yoshitome, H., Potential energy savings in ideal heat-integrated distillation column. Applied thermal engineering. 1998, 18, (11), 1077-1087. [29] Nakaiwa, M.; Huang, K.; Endo, A.; Ohmori, T.; Akiya, T.; Takamatsu, T., Internally heat-integrated distillation columns: a review. Chemical Engineering Research and Design. 2003, 81, (1), 162-177. [30] Olujic, Z.; Fakhri, F.; De Rijke, A.; De Graauw, J.; Jansens, P. J., Internal heat integration–the key to an energy‐conserving distillation column. Journal of Chemical Technology and Biotechnology. 2003, 78, (2‐3), 241-248. [31] Olujić, Ž.; Sun, L.; De Rijke, A.; Jansens, P., Conceptual design of an internally heat integrated propylene-propane splitter. Energy. 2006, 31, (15), 3083-3096. [32] Gadalla, M. A., Internal heat integrated distillation columns (iHIDiCs)—new systematic design methodology. Chemical engineering research and design. 2009, 87, (12), 1658-1666. [33] Gadalla, M.; Jiménez, L.; Olujic, Z.; Jansens, P., A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC). Computers & chemical engineering. 2007, 31, (10), 1346-1354.
|