(3.238.88.35) 您好!臺灣時間:2021/04/11 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃文祺
研究生(外文):Wen-Chi Huang
論文名稱:兩類近沸物分離之節能設計與控制
論文名稱(外文):Energy-saving Design and Control for the Separation of Two Close-boiling Mixtures
指導教授:錢義隆
口試委員:陳誠亮吳哲夫李豪業王國彬
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:近沸物多效熱整合內部熱整合萃取蒸餾程序設計程序控制
外文關鍵詞:close-boilingmulti-effectHIDiCextractive distillationprocess designprocess control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本文探討各類近沸混合物系統的節能設計流程與控制,總共有兩組待分離的混合物:乙苯與苯乙烯系統及環己烷與環己烯系統。首先討論的近沸物質是乙苯與苯乙烯系統,本論文參考台灣某工廠的實際資料加以簡化為兩成分混合物後探討其分離段的節能設計流程,包括單一傳統蒸餾塔、多效熱整合蒸餾系統、內部熱整合蒸餾系統,其中單一傳統蒸餾塔是為基礎案例(Base case)與其他蒸餾系統比較。多效熱整合蒸餾系統中,探討了五種不同的設計架構,分別稱為Light-Split-Forward (LSF)、Light-Split-Reverse (LSR)、Heavy-Split-Forward (HSF)、Heavy-Split-Reverse (HSR)以及Feed-Split (FS),其中以FS設計架構節省能源消耗的表現最為出色,也探討了此系統的動態控制架構。內部熱整合蒸餾系統相較於前述所有的設計架構節省了更多的能耗,但其設備成本較高,因此在設備攤還年限得以延長或是能源價格上漲的情況下優勢才會更加明顯。

  本論文另外針對環己烷與環己烯分離系統,設計了一節省能源消耗的萃取蒸餾系統。環己烷與環己烯分離系統較上述乙苯與苯乙烯分離系統還要困難,其混合物間的相對揮發度更小,然而在適當的夾帶劑選擇之下,使用萃取蒸餾設計的方式能夠節省非常多的能源消耗。另外也透過簡單的熱整合方式,探討此流程進一步節能的可能性;此流程設計為常壓分離系統,因此也探討了壓力改變對於此流程的效益,將蒸餾塔操作在真空狀態下能夠更加降低能源消耗。


  Energy-saving process design and control for the separation of some close-boiling mixtures will be discussed in this thesis. There are two systems including ethylbenzene/styrene and cyclohexane/cyclohexene will be investigated. For the separation of ethylbenzene and styrene, several designs including conventional distillation, multi-effect distillation and internally heat-integrated distillation column (HIDiC) are considered to save energy cost and total annual cost. Conventional distillation will be the base case in order to be compared with other distillation systems. For multi-effect distillation, five alternative configurations which include Light-Split-Forward (LSF)、Light-Split-Reverse (LSR)、Heavy-Split-Forward (HSF)、Heavy-Split-Reverse (HSR) and Feed-Split (FS), are studied. The results show that FS configuration can decrease most energy cost, so the dynamic control structure of this configuration is also investigated. HIDiC design can save more energy than any kind of multi-effect distillations but the capital cost is also higher so that this design will be economic favorable if payback period can be extended or the energy cost is increased.
  For the separation of cyclohexane and cyclohexene, some energy-saving designs of extractive distillation system are studied. Compared with ethylbenzene and styrene, this mixtures is harder to be separated because there relative volatility is much lower. The result shows that extractive distillation with suitable entrainer can save great amont of energy cost. Further more, simple heat-integrated design can decrease more energy cost. Energy consumption can be further reduced when columns are operated under vacuum condition.


誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XI
1. 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 乙苯與苯乙烯系統 3
1.2.2 環己烷與環己烯系統 5
1.3 研究動機 6
1.4 論文組織架構 7
2. 熱力學模式 8
2.1 前言 8
2.2 乙苯與苯乙烯系統 9
2.3 環己烷與環己烯系統 12
3. 穩態模擬與最適化分析 16
3.1 前言 16
3.2 乙苯與苯乙烯系統 17
3.2.1 單一蒸餾塔 18
3.2.2 多效熱整合蒸餾系統 21
3.2.3 內部熱整合蒸餾系統 27
3.2.4 小結 37
3.3 環己烷與環己烯系統 38
3.3.1 單一蒸餾塔 39
3.3.2 萃取蒸餾系統 42
3.3.2.1 雙塔萃取蒸餾系統 43
3.3.2.2 熱整合之萃取蒸餾系統 50
3.3.2.3 低壓萃取蒸餾塔與低壓萃取劑回收塔 52
4. 動態模擬 55
4.1 前言 55
4.2 乙苯與苯乙烯系統 55
4.2.1 控制架構與策略 56
4.2.1.1 基本控制概念 56
4.2.1.2 板溫控制環路 58
5. 結論及未來工作 75
參考文獻 77
附錄一 乙苯與苯乙烯系統年度成本計算 81
附錄二 環己烷與環己烯系統年度成本計算 84



[1] Jana, A. K., Heat integrated distillation operation. Applied Energy. 2010, 87, (5), 1477-1494.
[2] Julka, V.; Chiplunkar, M.; O''Young, L., Selecting entrainers for azeotropic distillation. Chemical Engineering Progress. 2009, 105, (3), 47-53.
[3] Kister, H. Z., Distillation design. McGraw-Hill New York: 1992; Vol. 223.
[4] Doherty, M. F.; Malone, M. F., Conceptual design of distillation systems. McGraw-Hill Science/Engineering/Math: 2001.
[5] Petlyuk, F. B., Distillation theory and its application to optimal design of separation units. Cambridge University Press: 2004.
[6] Luyben, W. L.; Chien, I.-L., Design and control of distillation systems for separating azeotropes. John Wiley & Sons: 2011.
[7] Luyben, W. L., Distillation design and control using Aspen simulation. John Wiley & Sons: 2013.
[8] Sandler, S. I., Using Aspen Plus in thermodynamics instruction: a step-by-step guide. John Wiley & Sons: 2015.
[9] Lem, K.-W.; Curran, S. A.; Sund, S.; Gabriel, M., Encyclopedia of chemical processing. Taylor & Francis: 2006.
[10] Welch, V. A., Cascade reboiling of ethylbenzene/styrene columns. In Google Patents: 2001.
[11] Luyben, W. L., Design and control of the styrene process. Industrial & Engineering Chemistry Research. 2010, 50, (3), 1231-1246.
[12] Vasudevan, S.; Rangaiah, G.; Konda, N. M.; Tay, W. H., Application and evaluation of three methodologies for plantwide control of the styrene monomer plant. Industrial & Engineering Chemistry Research. 2009, 48, (24), 10941-10961.
[13] Jongmans, M. T.; Hermens, E.; Raijmakers, M.; Maassen, J. I.; Schuur, B.; de Haan, A. B., Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation. Chemical Engineering Research and Design. 2012, 90, (12), 2086-2100.
[14] Jongmans, M. T.; Schuur, B.; de Haan, A. B., Ionic liquid screening for ethylbenzene/styrene separation by extractive distillation. Industrial & Engineering Chemistry Research. 2011, 50, (18), 10800-10810.
[15] Yu, J.; Shi, L.; Yuan, Y.; Chen, H.; Wang, S.; Huang, K., A Thermally Coupled Reactive Distillation System for the Separations of Cyclohexene/Cyclohexane Mixtures. Industrial & Engineering Chemistry Research. 2015.
[16] Steyer, F.; Qi, Z.; Sundmacher, K., Synthesis of cylohexanol by three-phase reactive distillation: influence of kinetics on phase equilibria. Chemical Engineering Science. 2002, 57, (9), 1511-1520.
[17] Marrufo, B.; Loras, S.; Lladosa, E., Phase equilibria involved in the extractive distillation of cyclohexane+ cyclohexene using diethyl carbonate as an entrainer. Journal of Chemical & Engineering Data. 2011, 56, (12), 4790-4796.
[18] Mi, W.; Tong, R.; Hua, C.; Yue, K.; Jia, D.; Lu, P.; Bai, F., Vapor–Liquid Equilibrium Data for Binary Systems of N, N-Dimethylacetamide with Cyclohexene, Cyclohexane, and Benzene Separately at Atmospheric Pressure. Journal of Chemical & Engineering Data. 2015, 60, (11), 3063-3068.
[19] Vega, A.; Díez, F.; Esteban, R.; Coca, J., Solvent selection for cyclohexane-cyclohexene-benzene separation by extractive distillation using non-steady-state gas chromatography. Industrial & engineering chemistry research. 1997, 36, (3), 803-807.
[20] Steyer, F.; Sundmacher, K., VLE and LLE data for the system cyclohexane+ cyclohexene+ water+ cyclohexanol. Journal of Chemical & Engineering Data. 2004, 49, (6), 1675-1681.
[21] Gmehling, J.; Möllmann, C., Synthesis of distillation processes using thermodynamic models and the Dortmund data bank. Industrial & engineering chemistry research. 1998, 37, (8), 3112-3123.
[22] Seider, W. D.; Seader, J. D.; Lewin, D. R., Product & Process Design Principles: Synthesis, Analysis and Evaluation. John Wiley & Sons: 2009.
[23] Chiang, T. P.; Luyben, W. L., Comparison of energy consumption in five heat-integrated distillation configurations. Industrial & Engineering Chemistry Process Design and Development. 1983, 22, (2), 175-179.
[24] Chiang, T. P.; Luyben, W. L., Comparison of the dynamic performances of three heat-integrated distillation configurations. Industrial & engineering chemistry research. 1988, 27, (1), 99-104.
[25] Mah, R. S.; Nicholas, J., J; Wodnik, R. B., Distillation with secondary reflux and vaporization: a comparative evaluation. AIChE Journal. 1977, 23, (5), 651-658.
[26] Fitzmorris, R.; Mah, R., Improving distillation column design using thermodynamic availability analysis. AIChE Journal. 1980, 26, (2), 265-273.
[27] Nakaiwa, M.; Huang, K.; Owa, M.; Akiya, T.; Nakane, T.; Sato, M.; Takamatsu, T., Energy savings in heat-integrated distillation columns. Energy. 1997, 22, (6), 621-625.
[28] Nakaiwa, M.; Huang, K.; Owa, M.; Akiya, T.; Nakane, T.; Sato, M.; Takamatsu, T.; Yoshitome, H., Potential energy savings in ideal heat-integrated distillation column. Applied thermal engineering. 1998, 18, (11), 1077-1087.
[29] Nakaiwa, M.; Huang, K.; Endo, A.; Ohmori, T.; Akiya, T.; Takamatsu, T., Internally heat-integrated distillation columns: a review. Chemical Engineering Research and Design. 2003, 81, (1), 162-177.
[30] Olujic, Z.; Fakhri, F.; De Rijke, A.; De Graauw, J.; Jansens, P. J., Internal heat integration–the key to an energy‐conserving distillation column. Journal of Chemical Technology and Biotechnology. 2003, 78, (2‐3), 241-248.
[31] Olujić, Ž.; Sun, L.; De Rijke, A.; Jansens, P., Conceptual design of an internally heat integrated propylene-propane splitter. Energy. 2006, 31, (15), 3083-3096.
[32] Gadalla, M. A., Internal heat integrated distillation columns (iHIDiCs)—new systematic design methodology. Chemical engineering research and design. 2009, 87, (12), 1658-1666.
[33] Gadalla, M.; Jiménez, L.; Olujic, Z.; Jansens, P., A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC). Computers & chemical engineering. 2007, 31, (10), 1346-1354.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔