跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許乃月
研究生(外文):Nai-Yueh Hsu
論文名稱:氧化銅/氧化亞銅/聚吡咯複合材料修飾紙電極於葡萄糖與β-半乳糖苷酶檢測之應用
論文名稱(外文):CuO/Cu2O/Ppy composites modified paper electrodes for highly sensitive detection of glucose and β-galactosidase
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
口試委員:吳秀梅陳明娟胡焯淳陳建甫
口試委員(外文):Shou-Mei WuMin-Jane ChenCho-Chun HuChien-Fu Chen
口試日期:2016-06-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:53
中文關鍵詞:纖維素聚吡咯紙電極非酵素型葡萄糖感測器β-半乳糖苷酶感測器
外文關鍵詞:CuO/Cu2O hybrid oxidesnon-enzymatic glucose sensorβ-galactosidase enzymatic activity detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發一快速方法合成氧化銅/氧化亞銅/聚吡咯複合材料修飾紙電極,具有類似葡萄糖氧化酶活性的氧化銅/氧化亞銅/聚吡咯粒徑大小194 ± 6奈米,在鹼性電解液中(0.5 M 氫氧化鈉與0.2 M氯化鈉),偵測葡萄糖具有較低的偵測電位( -0.075 伏特對於銀/氯化銀參考電極),最低偵測極限為0.34 mM。利用掃描式電子顯微鏡、穿透式電子顯微鏡、表面增強拉曼散射光譜以及光電子能譜儀確定氧化銅/氧化亞銅/聚吡咯複合材料修飾紙電極表面的型態及組成,並將氧化銅/氧化亞銅/聚吡咯複合材料修飾紙電極於葡萄糖檢測具有低檢測電位(大約 -0.075伏特)、高靈敏度( 42 μA-1 mM-1 cm-2 )、良好的選擇性以及穩定度。氧化銅/氧化亞銅/聚吡咯複合材料修飾紙電極應用於實際血液樣品檢測與血糖機之結果相輔合,顯示本修飾紙電極對於血糖檢測具有極大的發展潛力。本研究利用裁剪紙電極建立一個微小化的三電極系統,藉由氧化銅/氧化亞銅/聚吡咯複合材料修飾紙電極檢測β-半乳糖苷酶分解乳糖所產生的葡萄糖,造成氧化訊號強度的改變,將本電極應用於β-半乳糖苷酶之酵素活性檢測,得到之最低偵測極限為0.0053 mU mL-1,亦可以應用於大腸桿菌樣品檢測。

A simple method has been reported for the preparation of a non-enzymatic glucose sensor based on a CuO/Cu2O/Ppy composite. CuO/Cu2O/Ppy composites with an average diameter of 194 ± 6 nm coated onto Linen texture (LT) papers show glucose oxidase (GOx) like activity, which allowed for the detection of glucose at a much lower potential (-0.075 V vs. Ag/AgCl reference electrode) in alkaline solution (0.5 M NaOH), with a limit of detection (LOD) of 0.34 mM at a signal-to-noise ratio of 3. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface-enhanced Raman spectroscopy (SERS), and X-ray photoelectron spectroscopy (XPS) methods were used to characterize the surface morphology and composition of the CuO/Cu2O/Ppy composites. This sensor has the advantages of a low detection potential (ca. -0.075 V), high sensitivity (42 μA-1 mM-1 cm-2), selectivity, and stability. The sensor is utilized for glucose detection in blood samples, with results in good agreement with that obtained from a commercial meter. Our results reveal that the functional paper electrode holds great potential for monitoring of blood glucose levels. We also utilized CuO/Cu2O/Ppy composite modified LT paper to construct a microdevice to quantify the β-galactosidase enzymatic activity by monitoring the generation of glucose. Escherichia coli (E. coli) was employed as a model and β-galactosidase activity was induced by isopropyl-β-D-thiogalactoside (IPTG). The LOD is 0.0053 mU/mL. We show that the electrochemical assay works with the lysates of cells, allowing for the determination of β-galactosidase activity in E. coli.

謝誌 I
中文摘要 II
Abstract III
目錄 V
圖表目錄 VIII
第一章、緒論 1
1.1電化學分析法介紹 1
1.1.1 電化學系統簡介 1
1.1.2 工作電極簡介 2
1.1.3奈米材料於電分析化學介紹 3
1.1.4紙電極介紹 5
1.2 葡萄糖偵測簡介 6
1.2.1葡萄糖偵測之目的 6
1.2.2 葡萄糖之生理意義 6
1.2.3葡萄糖偵測 8
1.2.4電化學方法檢測葡萄糖 8
1.2.5 電性選擇聚合物在電化學之運用 12
1.3 Β-半乳糖苷酶偵測之簡介 12
1.3.1 β-半乳糖苷酶檢測 12
1.3.2 偵測方式 15
1.4 研究動機 16
1.5 參考文獻 17
第二章、氧化銅/氧化亞銅/聚吡咯奈米複合材料修飾紙電極製備與其電化學應用 26
2.1 前言 26
2.2 實驗材料與方法 26
2.2.1 實驗藥品與儀器 26
2.2.2 氧化銅/氧化亞銅/聚吡咯奈米複合材料修飾紙電極合成與電極之組裝 28
2.2.3 氧化銅/氧化亞銅/聚吡咯奈米複合材料修飾紙電極特性鑑定 29
2.2.4 血液樣品製備 29
2.2.5 電化學量測葡萄糖 30
2.2.6 大腸桿菌培養以及誘導基因表現 30
2.2.7 電化學量測β-半乳糖苷酶 31
2.3 實驗結果與討論 31
2.3.1 氧化銅/氧化亞銅/聚吡咯奈米複合材料修飾紙電極之合成與鑑定 31
2.3.2 氧化銅/氧化亞銅/聚吡咯奈米複合材料修飾紙電極電化學催化活性 33
2.3.3 氧化銅/氧化亞銅/聚吡咯奈米複合材料修飾紙電極於偵測葡萄糖應用 35
2.3.4 氧化銅/氧化亞銅/聚吡咯奈米複合材料修飾紙電極偵測β-半乳糖苷酶 37
2.4參考文獻 39
第三章、總結與未來展望 53



1. Yang, Z., Chiang, C.-K., Chang, H. T., Synthesis of Fluorescent and Photovoltaic Cu2O Nanocubes. Nanotechnology 2008, 19.
2. Hidalgo, C., Reyes, J., Goldschmidt, R., Induction and General Properties of 3-Galactosidase and β‑Galactosidase Permease in Pseudomonas BAL-31. J. Bacteriol. 1977, 129, 821.
3. Tschirhart, T., Zhou, X. Y., Ueda, H., Tsao, C. Y., Kim, E., Payne, G. F., Bentley, W. E., Electrochemical Measurement of the β‑Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay. ACS Synth Biol. 2016, 15, 28.
4. Mullera, D., Rambob , R. C., Rambob, L., Portoc, M.,Wido, H., Schreinerd, W. H.,Structure and Properties of Polypyrrole/Bacterial Cellulose Nanocomposites. Carbohydrate Polymers 2013,94,655
5. Mahadeva, S. K., Yun, M. S., Kim, J.,Flexible Humidity and Temperature Sensor Based on Cellulose–Polypyrrole Nanocomposite. Sens. Actuator B-Chem. 2011,165, 194.
6. Wang, W., Tu,Y., Zhang, P., Zhang, G.,Surfactant-Assisted Synthesis of Double-Wall Cu2O Hollow Spheres. CrystEngComm 2010,13, 1838.
7. Yao, W., Li, F.-L., Li, H.-X., Lang, J.-P., Fabrication of Hollow Cu2O@Cuo-Supported Au–Pd Alloy Nanoparticles with High Catalytic Activity through the Galvanic Replacement Reaction. J. Mater. Chem. A 2015, 3, 4578.
8. Hamilton, J. C. F., J. C., Anderson, R. J, In Situ Raman Spectroscopy of Anodic Films Formed on Copper and Silver in Sodium Hydroxide Solution. J. Electrochem. Soc. 1986, 133, 439.
9. Mho, S. I., Johnson D. C., Electrocatalytic Response of Carbohydrates at Copper-Alloy Electrodes. J. Electroanal. Chem. 2001, 500,524.
10. Nancy, G. M., Luis, A. G.-C., Bertha, A. P.-U., Leonor, M. B.-J., René, A.-L., Federico, C.-Z., Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content. J Nanomater.2015, 2015, 1.
11. Lu, N., Shao, C., Li, X.; Shen, T.; Zhang, M., Miao, F.; Zhang, P., Zhang, X., Wang, K., Zhang, Y., Liu, Y., Cuo/Cu2O Nanofibers as Electrode Materials for Non-Enzymatic Glucose Sensors with Improved Sensitivity. RSC Adv. 2014, 4, 31056.
12. Kang, X., Mai, Z., Zou, X., Cai, P., Mo, J., A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode. Anal Biochem. 2007, 363, 143.
13. Reitz, E., Jia, W., Gentile, M., Wang, Y., Lei, Y., CuO Nanospheres Based Nonenzymatic Glucose Sensor. Electroanalysis 2008, 20, 2482.
14. Luo, S., Su, F., Liu, C., Li, J.,Liu, R., Xiao, Y., Li, Y., Liu, X., Cai, Q., A New Method for Fabricating a Cuo/TiO2 Nanotube Arrays Electrode and Its Application as A Sensitive Nonenzymatic Glucose Sensor. Talanta 2011, 86, 157.
15. Meng, Z.,Sheng, Q., Zheng, J., A Sensitive Non-Enzymatic Glucose Sensor in Alkaline Media Based on Cu/Mno2-Modified Glassy Carbon Electrode. J. Iran. Chem. Soc. 2012, 9, 1007.
16. Ye, D., Liang, G., Li, H., Luo, J., Zhang, S., Chen, H.,Kong, J., A Novel Nonenzymatic Sensor Based on CuO Nanoneedle/Graphene/Carbon Nanofiber Modified Electrode for Probing Glucose in Saliva. Talanta 2013, 116, 223


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top