|
1.Lanciano, P. et al. Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. Biochim. Biophys. Acta 1827, 1332-1339 (2013). 2.Martin, K.R. & Barrett, J.C. Reactive oxygen species as double-edged swords in cellular processes: Low-dose cell signaling versus high-dose toxicity. Hum. Exp. Toxicol 21, 71-75 (2002). 3.Samoilova, R.I., Crofts, A.R. & Dikanov, S.A. Reaction of superoxide radical with quinone molecules. J. Phys. Chem. A 115, 11589-11593 (2011). 4.Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335-344 (2003). 5.Chance, B. & Hollunger, G. Energy-linked reduction of mitochondrial pyridine nucleotide. Nature 185, 666-672 (1960). 6.Hansford, R.G., Hogue, B.A. & Mildaziene, V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J. Bioenerg. Biomembr. 29, 89-95 (1997). 7.Wellen, K.E. & Thompson, C.B. Cellular metabolic stress: Considering how cells respond to nutrient excess. Mol. Cell 40, 323-332 (2010). 8.Stadtman, E.R. & Levine, R.L. Protein oxidation. Ann. N.Y. Acad. Sci. 899, 191-208 (2000). 9.Rubbo, H. et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 269, 26066-26075 (1994). 10.Druzhyna, N.M., Wilson, G.L. & LeDoux, S.P. Mitochondrial DNA repair in aging and disease. Mech. Ageing Dev. 129, 383-390 (2008). 11.Nelson, D.L. & Cox, M.M. Lehninger principles of biochemistry, fifth edition. 708-772 (2008). 12.Davies, M.J. The oxidative environment and protein damage. Biochim. Biophys. Acta, Proteins Proteomics 1703, 93-109 (2005). 13.Grune, T., Shringarpure, R., Sitte, N. & Davies, K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J. Gerontol. A Biol. Sci. Med. Sci. 56, B459-B467 (2001). 14.Zhang, W., Xiao, S. & Ahn, D.U. Protein oxidation: Basic principles and implications for meat quality. Crit. Rev. Food Sci. Nutr. 53, 1191-1201 (2013). 15.Stadtman, E.R. Protein oxidation and aging. Free Radical Res. 40, 1250-1258 (2006). 16.Garrison, W.M. & Weeks, B.M. Radiation chemistry of compounds containing the peptide bond. Radiat. Res. 17, 341-352 (1962). 17.Garrison, W.M. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 87, 381-398 (1987). 18.Lee, J.W. & Helmann, J.D. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363-367 (2006). 19.Uchida, K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Progress in Lipid Research 42, 318-343 (2003). 20.Burcham, P.C. & Kuhan, Y.T. Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochem. Biophys. Res. Commun 220, 996-1001 (1996). 21.Tilley, K.A. et al. Tyrosine cross-links: Molecular basis of gluten structure and function. J. Agric. Food. Chem. 49, 2627-2632 (2001). 22.Martinaud, A. et al. Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. J. Agric. Food. Chem. 45, 2481-2487 (1997). 23.Morzel, M., Gatellier, P., Sayd, T., Renerre, M. & Laville, E. Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Sci. 73, 536-543 (2006). 24.Xu, G. & Chance, M.R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev. 107, 3514-3543 (2007). 25.Shacter, E. Quantification and significance of protein oxidation in biological samples. Drug Metab. Revi. 32, 307-326 (2000). 26.Vogt, W. Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radical Biol. Med. 18, 93-105 (1995). 27.Claiborne, A. et al. Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407-15416 (1999). 28.Boschi-Muller, S., Gand, A. & Branlant, G. The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch. Biochem. Biophys. 474, 266-273 (2008). 29.Pastore, A. & Piemonte, F. S-Glutathionylation signaling in cell biology: Progress and prospects. Eur. J. Pharm. Sci. 46, 279-292 (2012). 30.Jeong, W., Bae, S.H., Toledano, M.B. & Rhee, S.G. Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radical Biol. Med. 53, 447-456 (2012). 31.Giulivi, C., Traaseth, J.N. & Davies, A.K.J. Tyrosine oxidation products: analysis and biological relevance. Amino Acids 25, 227-232 (2003). 32.Berlett, B.S. & Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316 (1997). 33.Amici, A., Levine, R.L., Tsai, L. & Stadtman, E.R. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J. Biol. Chem. 264, 3341-3346 (1989). 34.Jung, T., Höhn, A., Catalgol, B. & Grune, T. Age-related differences in oxidative protein-damage in young and senescent fibroblasts. Arch. Biochem. Biophys. 483, 127-135 (2009). 35.Jung, T., Engels, M., Kaiser, B., Poppek, D. & Grune, T. Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radical Biol. Med. 40, 1303-1312 (2006). 36.Finley, E.L., Dillon, J., Crouch, R.K. & Schey, K.L. Identification of tryptophan oxidation products in bovine alpha-crystallin. Protein Sci. 7, 2391-2397 (1998). 37.Maskos, Z., Rush, J.D. & Koppenol, W.H. The hydroxylation of tryptophan. Arch. Biochem. Biophys. 296, 514-520 (1992). 38.Pietrucha, K. & Łubis, M. Some reactions of OH radicals with collagen and tyrosine in aqueous solutions. Int. J. Radiat. Appl. Instrum. Part C 36, 155-160 (1990). 39.Morin, B., Davies, M.J. & Dean, R.T. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage. Biochem. J. 330, 1059-1067 (1998). 40.Dean, R.T., Wolff, S.P. & McElligott, M.A. Histidine and proline are important sites of free radical damage to proteins. Free Radic. Res. Commun. 7, 97-103 (1989). 41.Uchida, K. & Kawakishi, S. Reaction of a histidyl residue analog with hydrogen peroxide in the presence of copper(II) ion. J. Agric. Food. Chem. 38, 660-664 (1990). 42.Xu, G., Takamoto, K. & Chance, M.R. Radiolytic modification of basic amino acid residues in peptides: Probes for examining protein−protein interactions. Anal. Chem. 75, 6995-7007 (2003). 43.L. Hawkins, C. & J. Davies, M. EPR studies on the selectivity of hydroxyl radical attack on amino acids and peptides. J. Chem. Soc., Perkin Trans. 2, 2617-2622 (1998). 44.Uchida, K., Kato, Y. & Kawakishi, S. A novel mechanism for oxidative cleavage of prolyl peptides induced by the hydroxyl radical. Biochem. Biophys. Res. Commun. 169, 265-271 (1990). 45.Trelstad, R.L., Lawley, K.R. & Holmes, L.B. Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives. Nature 289, 310-312 (1981). 46.Requena, J.R. & Stadtman, E.R. Conversion of lysine to Nϵ-(carboxymethyl)lysine increases susceptibility of proteins to metal-catalyzed oxidation. Biochem. Biophys. Res. Commun. 264, 207-211 (1999). 47.Davies, M.J. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Arch. Biochem. Biophys. 336, 163-172 (1996). 48.Xu, G. & Chance, M.R. Radiolytic modification of acidic amino acid residues in peptides: Probes for examining protein−protein interactions. Anal. Chem. 76, 1213-1221 (2004). 49.Xu, G. & Chance, M.R. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Anal. Chem. 77, 4549-4555 (2005). 50.Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P. & Fenn, W.O. Oxygen poisoning and X-irradiation: A mechanism in common. Science 119, 623-626 (1954). 51.Hempelmann, L.H. & Hoffman, J.G. Practical aspects of radiation injury. Annu. Rev. Nucl. Sci. 3, 369-392 (1953). 52.Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300 (1956). 53.McCord, J.M. & Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein).. J. Biol. Chem. 244, 6049-6055 (1969). 54.Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605 (1979). 55.Kujoth, G.C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484 (2005). 56.Yui, R., Ohno, Y. & Matsuura, E.T. Accumulation of deleted mitochondrial DNA in aging drosophila melanogaster. Genes Genet. Syst. 78, 245-251 (2003). 57.Muller, F.L., Lustgarten, M.S., Jang, Y., Richardson, A. & Van Remmen, H. Trends in oxidative aging theories. Free Radical Biol. Med. 43, 477-503 (2007). 58.Kuznetsova, A.A., Kuznetsov, N.A., Ishchenko, A.A., Saparbaev, M.K. & Fedorova, O.S. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Biochim. Biophys. Acta, Gen. Subj. 1840, 387-395 (2014). 59.Höhn, A., König, J. & Grune, T. Protein oxidation in aging and the removal of oxidized proteins. J. Proteomics 92, 132-159 (2013). 60.Martínez, A., Portero-Otin, M., Pamplona, R. & Ferrer, I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol. 20, 281-297 (2010). 61.Sultana, R., Perluigi, M. & Butterfield, D.A. Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol. 118, 131-150 (2009). 62.Choi, J. et al. Oxidative Modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson''s and Alzheimer''s diseases. J. Biol. Chem. 279, 13256-13264 (2004). 63.Sorolla, M.A. et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biol. Med. 45, 667-678 (2008). 64.Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell. Longevity 2011 (2011). 65.Tainer, J.A., Roberts, V.A. & Getzoff, E.D. Protein metal-binding sites. Curr. Opin. Biotechnol. 3, 378-387 (1992). 66.Valentine, J.S., Doucette, P.A. & Zittin Potter, S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem 74, 563-593 (2005). 67.Hengen, P.N. Purification of His-Tag fusion proteins from Escherichia coli. Trends Biochem. Sci 20, 285-286 (1995). 68.Mller, I.M., Rogowska-Wrzesinska, A. & Rao, R.S.P. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J. Proteomics 74, 2228-2242 (2011). 69.Uchida, K. & Kawakishi, S. Ascorbate-mediated specific oxidation of the imidazole ring in a histidine derivative. Bioorg. Chem. 17, 330-343 (1989). 70.Schöneich, C. Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J. Pharm. Biomed. Anal. 21, 1093-1097 (2000). 71.Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 215, 213-219 (1993). 72.Khossravi, M. & Borchardt, R.T. Chemical pathways of peptide degradation. X: Effect of metal-catalyzed oxidation on the solution structure of a histidine-containing peptide fragment of human relaxin. Pharm. Res. 17, 851-858 (2000). 73.Uchida, K. & Kawakishi, S. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem. 269, 2405-2410 (1994). 74.Lewisch, S.A. & Levine, R.L. Determination of 2-oxohistidine by amino acid analysis. Anal. Biochem. 231, 440-446 (1995). 75.Atwood, C.S. et al. Copper catalyzed oxidation of Alzheimer Abeta. Cell. Mol. Biol. 46, 777-783 (2000). 76.Sayre, L.M. et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease. J. Neurochem. 74, 270-279 (2000). 77.Curtain, C.C. et al. Alzheimer''s disease Amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466-20473 (2001). 78.Schöneich, C. & Williams, T.D. Cu(II)-catalyzed oxidation of β-Amyloid peptide targets His13 and His14 over His6: Detection of 2-oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15, 717-722 (2002). 79.Dubbs, J.M. & Mongkolsuk, S. Peroxide-sensing transcriptional regulators in bacteria. J. Bacteriol 194, 5495-5503 (2012). 80.Traore, D.A.K. et al. Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat. Chem. Biol. 5, 53-59 (2009). 81.Smith, M.G. et al. Global analysis of protein function using protein microarrays. Mech. Ageing Dev. 126, 171-175 (2005). 82.Uzoma, I. & Zhu, H. Interactome mapping: Using protein microarray technology to reconstruct diverse protein networks. Genomics Proteomics Bioinformatics 11, 18-28 (2013). 83.Chen, C.-S. et al. Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Mol. Cell. Proteomics 8, 1765-1776 (2009). 84.Zhu, H. & Qian, J. Chapter Four – Applications of Functional Protein Microarrays in Basic and Clinical Research. Adv. Genet. 79, 123-155 (2012). 85.Chandra, H., Reddy, P.J. & Srivastava, S. Protein microarrays and novel detection platforms. Expert Rev. Proteomics 8, 61-79 (2011). 86.Hall, D.A., Ptacek, J. & Snyder, M. Protein microarray technology. Mech. Ageing Dev. 128, 161-167 (2007). 87.Clegg, R.M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6, 103-110 (1995). 88.Piston, D.W. & Kremers, G.-J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci 32, 407-414 (2007). 89.Broussard, J.A., Rappaz, B., Webb, D.J. & Brown, C.M. Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 8, 265-281 (2013). 90.Citovsky, V., Gafni, Y. & Tzfira, T. Localizing protein–protein interactions by bimolecular fluorescence complementation in planta. Methods 45, 196-206 (2008). 91.Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882-887 (1997). 92.Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906-918 (2002). 93.Johnson, W.C. Protein secondary structure and circular dichroism: A practical guide. Proteins: Struct. Funct. Bioinf. 7, 205-214 (1990). 94.Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876-2890 (2006). 95.Kelly, S.M., Jess, T.J. & Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta, Proteins Proteomics 1751, 119-139 (2005). 96.Huang, C.F., Liu, Y.H. & Tai, H.C. Synthesis of peptides containing 2‐oxohistidine residues and their characterization by liquid chromatography‐tandem mass spectrometry. J. Pept. Sci. 21, 114-119 (2015). 97.Wu, J., Fan, Y. & Ling, J. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Nucleic Acids Res. 42, 6523-6531 (2014). 98.Green, A.R., Hayes, R.P., Xun, L. & Kang, C. Structural understanding of the glutathione-dependent reduction mechanism of glutathionyl-hydroquinone reductases. J. Biol. Chem. 287, 35838-35848 (2012). 99.Le, H.-T. et al. YajL, Prokaryotic homolog of parkinsonism-associated protein DJ-1, functions as a covalent chaperone for thiol proteome. J. Biol. Chem. 287, 5861-5870 (2012). 100.Nishimura, K., Nakayashiki, T. & Inokuchi, H. Cloning and sequencing of the hemE gene encoding uroporphyrinogen III decarboxylase (UPD) from Escherichia coli K-12. Gene 133, 109-113 (1993). 101.Lopes, J.M. & Lawther, R.P. Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon. Gene 76, 255-269 (1989). 102.Henard, C.A., Bourret, T.J., Song, M. & Vázquez-Torres, A. Control of redox balance by the stringent response regulatory protein promotes antioxidant defenses of salmonella. J. Biol. Chem. 285, 36785-36793 (2010). 103.Lim, S.-J., Jung, Y.-M., Shin, H.-D. & Lee, Y.-H. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J. Biosci. Bioeng. 93, 543-549 (2002). 104.Shi, F., Li, K., Huan, X. & Wang, X. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and l-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl. Biochem. Biotechnol. 171, 504-521 (2013). 105.Murray, E.L. & Conway, T. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. J. Bacteriol. 187, 991-1000 (2005). 106.Mittl, P.R.E. & Schulz, G.E. Structure of glutathione reductase from Escherichia coli at 1.86 Å resolution: Comparison with the enzyme from human erythrocytes. Protein Sci. 3, 799-809 (1994). 107.Xiong, X., Yang, L., Han, X., Wang, J. & Zhang, W. Knockout and function analysis of pqqL gene in Escherichia coli. Acta Microbiol. Sin. 50, 1380-1384 (2010). 108.Misra, H.S. et al. Pyrroloquinoline‐quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett. 578, 26-30 (2004). 109.Brock, M., Maerker, C., Schütz, A., Völker, U. & Buckel, W. Oxidation of propionate to pyruvate in Escherichia coli. Eur. J. Biochem. 269, 6184-6194 (2002). 110.Lenarčič Živković, M. et al. Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein. J. Biol. Chem. 287, 40457-40470 (2012). 111.Wright, N.T., Cannon, B.R., Zimmer, D.B. & Weber, D.J. S100A1: Structure, function, and therapeutic potential. Curr. Chem. Biol. 3, 138-145 (2009). 112.Perrin, R.J. et al. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer''s disease. PLoS ONE 6, e16032 (2011). 113.Kuchibhotla, K.V. et al. Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59, 214-225 (2008). 114.Garcia-Alloza, M., Dodwell, S.A., Meyer-Luehmann, M., Hyman, B.T. & Bacskai, B.J. Plaque-Derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J. Neuropath. Exp. Neurol. 65, 1082-1089 (2006). 115.Du Yan, S. et al. Amyloid-β peptide–receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: A proinflammatory pathway in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 94, 5296-5301 (1997).
|