跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘彥瑾
研究生(外文):YAN-JIN PAN
論文名稱:帶電荷胺基酸側鏈長度對β-Hairpin的Diagonal離子對作用力之影響及位於d位置含氟胺基酸對雙螺旋穩定度的影響
論文名稱(外文):Effect of Side Chain Length of Charged Residues on a Diagonal Ion Pairing Interaction in a β-Hairpin and Effects of Fluorinated Amino Acids at d-Positions of Coiled Coil Structure
指導教授:陳平陳平引用關係
口試委員:陳佩燁黃人則
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:122
中文關鍵詞:離子對作用diagonal 作用力β-hairpin捲曲螺旋含氟胺基酸GCN4
外文關鍵詞:Ion pairing interactionsdiagonal interactionsβ-hairpincoiled coilfluorinated amino acidsGCN4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
離子對作用力是穩定蛋白質重要的作用力之一,穩定離子對作用力主要由帶相反電荷的氨基酸所形成,例如:Arg/Lys and Asp/Glu。為了深入了解離子對作用力的形成以及它們在蛋白質結構中扮演的腳色,我們設計了一個β-hairpin的胜肽系統,測量離子對作用力對β-hairpin結構穩定性的影響。在此,我們研究了側鏈長度對cross-strand diagonal離子對作用力的影響。胜肽透過固相合成,並用反相HPLC純化。根據二維核磁共振光譜(TOCSY,ROESY和DQF-COSY),確認胜肽所形成的β-hairpin結構並計算出β-hairpin摺疊比例以及自由能。結果顯示β-hairpin的穩定性: HPDAadDap> HPDGluDab~HPDAadDab>HPDGluDap> HPDAspDab>HPDAspDap。即側鏈較長的胺基酸離子對,形成最穩定的β-hairpin 結構。
雙螺旋結構是在自然界中常發現的結構單元,對於其序列和穩定性之間的關係有相當了解,因此常被用來做為研究蛋白質二級和三級作用力的理想系統。許多研究顯示將含氟氨基酸(疏水胺基酸的類似物)併入蛋白質疏水核心的結構中, 可穩定此蛋白質結構。這種穩定通常被稱為fluoro-stabilization effect。為了進一步了解fluoro-stabilization effect對蛋白質穩定性的影響,我們將含氟氨基酸併入一雙螺旋結構胜肽的疏水核心結構中,此一胜肽是根據轉錄因子GCN4設計的序列。


Ion pairing interactions play important roles in protein structure stability. Stabilizing ion pairing interactions are formed between two oppositely charged residues such as Arg/Lys and Asp/Glu. To gain insight into ion pairing interactions and their potential roles in protein structure, we have designed a β-hairpin peptide system, allowing the measurement of the stability effects of individual charged residues and ion pairing interactions. Herein, we study the effect of side chain length on cross-strand diagonal ion pairing interactions.
Peptides were synthesized by solid phase methods and purified by reverse phase HPLC. The sequence specific assignments were obtained based on TOCSY, ROESY, and DQF-COSY spectra. The β-hairpin structures were confirmed by chemical shift deviation, 3JHNα coupling constants, and NOE signals. The fraction folded and ΔGfold of the peptides were derived by comparing the chemical shifts with the folded and unfolded reference peptides. The stability of the peptides followed the trend : HPDAadDab ~ HPDAadDap > HPDGluDab ~ HPDGluDap > HPDAspDab ~ HPDAspDap. The results indicate that pairing the longer side chains provides the most stable β-hairpin.
Coiled coil is a common motif found in nature. These motifs are ideal models for the study of protein secondary and teriary inteactions because the relationship between sequence and stability are well-understood. Incorporation of fluorinated amino acid residues into coiled coil peptides can stabilize coiled coils. This stabilization has been referred to as the fluoro-stabilization effect. To further understand the fluoro-stabilization effect in proteins, peptides based on the leucine zipper region of the yeast transcription factor GCN4 was designed and fluorinated amino acids were incorporated at the hydrophobic positions.


Table of Contents
誌謝 i
中文摘要 iii
Abstract iv
Table of Contents vi
List of Figures xi
List of Tables xii
List of Schemes xiii
Abbreviation xiv
Chapter 1. Introduction 1
1-1. Proteins 2
1-2. Hierarchy of Protein Structure 4
Primary Structure 4
Secondary Structure 5
Tertiary Structure 6
Quaternary Structure 6
1-3. Driving Force of Protein Folding 7
1-4. Thesis Overview 8
1-5. References 9
Chapter 2. Effect of Side Chain Length of Charged Residues on a Diagonal Ion Pairing Interaction in a β-Hairpin 13
2-1. Introduction 14
β-Sheets Structrues 14
β-Sheet Propensity 15
β-Turns 16
Cross-Strand Interactions 17
β-Hairpins 18
Double Mutant Cycle 19
2-2. Results and Disscussion 21 Peptide Design 21
Peptide Structure Analysis by 2D-NMR Spectrometry 25
Characterization of the β-Hairpin Structues: Sequence Specific Assignment
and Chemical Shift Dispersion 25
Characterization of the β-Hairpin Structues: Chemical Shift Deviation 26
Characterization of the β-Hairpin Structues: 3JHNα Coupling Constant 28
Characterization of the β-Hairpin Structues: Nuclear Overhauser Effect
(NOE) 33
Characterization of the β-Hairpin Structues: β-Hairpin Stability 49
Diagonal Cross-Strand Interaction Energy 51
2-3. Disscusion 52
2-4. Conclusion 54
2-5. Future Aspects 54
2-6. Acknowledgements 54
2-7. Experimental Section 55
General Materials and Methods 55
Peptide Syntheis 56
Nuclear Magnetic Resonance Spectroscopy 66
3JNHα Measurement 77
Distance Determination by NOE Intergrations 77
Chemical Shift Deviation 77
Free folding energy 78
Double mutant cycle 78
2-8. Refernces 80
Chapter 3. Ion-Pairing Interaction of β–Hairpin Structure 85
3-1. Introdution 86
Coiled Coils in Biological Systems 86
GCN4 Coiled Coil Motif 87
Coiled Coil Sequence and Structure 88
Knobs-Into-Holes Interactons of a Dimeric Coiled Coil 90
Coiled Coil Stability 91
Coiled Coil with a Fluorous Core 94
Chapter Overview 96
3-2. Results 96
Synthesis of Fmoc-hexafluoroleucine 96
3-3. Discussion 100
3-4. Experimental Section 100
3-5. References 102
NMR Spectrum 106
Appendix A. Effect of Positively Charged Amino Acid Side Chain Length on β-Hairpin Stability 108
A-1. Chemical Shift Deviation 109
A-2. NOE Assignments 110
A-3. Wuthrich Diagrams 113
A-4. 3JHNα Coupling Constant 115
A-5. Fraction Folded and ΔGfold 116
A-6. 1H Chemical Shift Assignment 118
License for Reprint of Figure 121


1-5. References
1. Gavin, A. C.; Aloy, P.; Grandi, P.; Krause, R.; Boesche, M.; Marzioch, M.; Rau, C.; Jensen, L. J.; Bastuck, S.; Dumpelfeld, B.; Edelmann, A.; Heurtier, M. A.; Hoffman, V.; Hoefert, C.; Klein, K.; Hudak, M.; Michon, A. M.; Schelder, M.; Schirle, M.; Remor, M.; Rudi, T.; Hooper, S.; Bauer, A.; Bouwmeester, T.; Casari, G.; Drewes, G.; Neubauer, G.; Rick, J. M.; Kuster, B.; Bork, P.; Russell, R. B.; Superti-Furga, G. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440, 631-636.
2.Radzicka, A.; Wolfenden, R. A Proficient Enzyme. Science 1995, 267, 90-93.
3.Muzio, M.; Mantovani, A. Toll-like receptors. Microb. Infect. 2000, 2, 251-255.
4.Nishizuka, Y. The Role of Protein Kinase-C in Cell-Surface Signal Transduction and Tumor Promotion. Nature 1984, 308, 693-698.
5. Pauling, L.; Corey, R. B. The Structure of Hair, Muscle, and Related Proteins. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 261-271.
6. Pauling, L.; Corey, R. B. The Structure of Fibrous Proteins of the Collagen-Gelatin Group. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 272-281.
7. Recalcati, S.; Invernizzi, P.; Arosio, P.; Cairo, G. New functions for an iron storage protein: The role of ferritin in immunity and autoimmunity. J. Autoimmun. 2008, 30, 84-89.
8. Caterina, M. J.; Schumacher, M. A.; Tominaga, M.; Rosen, T. A.; Levine, J. D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389, 816-824.
9. Ananthakrishnan, R.; Ehrlicher, A. The forces behind cell movement. Int. J. Biol. Sci. 2007, 3, 303-317.
10. Gumbiner, B. M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 1996, 84, 345-357.
11. Hegyi, H.; Gerstein, M. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J. Mol. Biol. 1999, 288, 147-164.
12. Chiti, F.; Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem 2006, 75, 333-366.
13. Caughey, B.; Chesebro, B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 1997, 7, 56-62.
14. Pauling, L.; Corey, R. B. The Planarity of the Amide Group in Polypeptides. J. Am. Chem. Soc. 1952, 74, 3964-3964.
15. Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. J. Mol. Biol. 1963, 7, 95-&.
16. Wright, P. E.; Dyson, H. J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 1999, 293, 321-331.
17. Mizushim.Y; Kobayash.M. Effect of Protein Denaturant and Inhibitors against Protein Denaturation on Biological Activity of Antibody. Jpn. J. Exp. Med. 1968, 38, 149-&.
18. Sanger, F.; Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 1951, 49, 481.
19. Sanger, F.; Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 1951, 49, 463.
20. Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-6.
21. Pauling, L.; Corey, R. B.; Branson, H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205.
22. Kendrew, J. C.; Dickerson, R. E.; Strandberg, B. E.; Hart, R. G.; Davies, D. R.; Phillips, D. C.; Shore, V. C. Structure of myoglobin: A three-dimensional fourier synthesis at 2 A resolution. Nature 1960, 185, 422.
23. Fanelli, A. R.; Antonini, E.; Caputo, A. Studies on the structure of hemoglobin 1. physicochemical properties of human globin. Biochim. Biophys. Acta 1958, 30, 608.
24. Klotz, I. M.; Langerma.Nr; Darnall, D. W. Quaternary structure of proteins. Annu. Rev. Biochem. 1970, 39, 25.
25. DeDecker, B. S.; OBrien, R.; Fleming, P. J.; Geiger, J. H.; Jackson, S. P.; Sigler, P. B. The crystal structure of a hyperthermophilic archaeal TATA-box binding protein. J. Mol. Biol. 1996, 264, 1072-1084.
26. Sanger, F. The Arrangement of Amino Acids in Proteins. Adv. Protein Chem. 1952, 7, 1-67.
27. Fields, G. B.; Noble, R. L. Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int. J. Pept. Protein Res. 1990, 35, 161-214.
28. Atherton, E.; Fox, H.; Harkiss, D.; Logan, C. J.; Sheppard, R. C.; Williams, B. J. Mild procedure for solid-phase peptide-synthesis - use of fluorenylmethoxycarbonylamino-acids. J. Chem. Soc. Chem. Comm. 1978, 537-539.
29. Eisenberg, D. The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 11207-11210.
30. Pauling, L.; Corey, R. B.; Branson, H. R. The Structure of Proteins - 2 Hydrogen-Bonded Helical Configurations of the Polypeptide Chain. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205-211.
31. Kabsch, W.; Sander, C. Dictionary of Protein Secondary Structure - Pattern-Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22, 2577-2637.
32. Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino-Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins. Biochemistry 1974, 13, 211-222.
33. Chou, P. Y.; Fasman, G. D. Prediction of protein conformation. Biochemistry 1974, 13, 222.
34. Pauling, L.; Corey, R. B. The Pleated Sheet, a New Layer Configuration of Polypeptide Chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-256.
35. Edsall, J. T.; Flory, P. J.; Kendrew, J. C.; Liquori, A. M.; Nemethy, G.; Ramachan.Gn; Scheraga, H. A. A Proposal of Standard Conventions and Nomenclature for Description of Polypeptide Conformations. J. Mol. Biol. 1966, 15, 399-407.
36. Sibanda, B. L.; Thornton, J. M. β-Hairpin Families in Globular-Proteins. Nature 1985, 316, 170-174.
37. Tanimura, R.; Kidera, A.; Nakamura, H. Determinants of protein side-chain packing. Protein Sci. 1994, 3, 2358.
38. Lee, C.; Subbiah, S. Prediction of potein side-chain conformation by packing optimization. J. Mol. Biol. 1991, 217, 373.
39. Kussell, E.; Shimada, J.; Shakhnovich, E. I. Excluded volume in protein side-chain packing. J. Mol. Biol. 2001, 311, 183.
40. Dill, K. A. Dominant Forces in Protein Folding. Biochemistry 1990, 29, 7133-7155.
41. Pace, C. N.; Shirley, B. A.; McNutt, M.; Gajiwala, K. Forces contributing to the conformational stability of proteins. FASEB J. 1996, 10, 75.
42. Barlow, D. J.; Thornton, J. M. Ion-Pairs in Proteins. J. Mol. Biol. 1983, 168, 867-885.
43. Makhatadze, G. I.; Loladze, V. V.; Ermolenko, D. N.; Chen, X. F.; Thomas, S. T. Contribution of surface salt bridges to protein stability: Guidelines for protein engineering. J. Mol. Biol. 2003, 327, 1135.
44. Perutz, M. F. Electrostatic Effects in Proteins. Science 1978, 201, 1187-1191.
45. Hagler, A. T.; Huler, E.; Lifson, S. Energy Functions for Peptides and Proteins .1. Derivation of a Consistent Force-Field Including Hydrogen-Bond from Amide Crystals. J. Am. Chem. Soc. 1974, 96, 5319-5327.
46. Hagler, A. T.; Lifson, S. Energy Functions for Peptides and Proteins .2. Amide Hydrogen-Bond and Calculation of Amide Crystal Properties. J. Am. Chem. Soc. 1974, 96, 5327-5335.
47. Stickle, D. F.; Presta, L. G.; Dill, K. A.; Rose, G. D. Hydrogen-Bonding in Globular-Proteins. J. Mol. Biol. 1992, 226, 1143-1159.
48. Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A view of the hydrophobic effect (vol 106, pg 523, 2002). J. Phys. Chem. B 2002, 106, 2812-2812.
49. Feinberg, G.; Sucher, J. General Theory of the van der Waals Interaction: A Model-Independent Approach. Phys Rev a-Gen Phys 1970, 2, 2395-2415.
50. Levitt, M.; Gerstein, M.; Huang, E.; Subbiah, S.; Tsai, J. Protein folding: The endgame. Annu. Rev. Biochem 1997, 66, 549-579.
51. Moitra, J.; Szilak, L.; Krylov, D.; Vinson, C. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 1997, 36, 12567-12573.
52. Harbury, P. B.; Zhang, T.; Kim, P. S.; Alber, T. A Switch between 2-Stranded, 3-Stranded and 4-Stranded Coiled Coils in GCN 4 leucine-zipper Mutants. Science 1993, 262, 1401-1407.


2-8. Refernces

1. Hobohm, U.; Scharf, M.; Schneider, R.; Sander, C. Selection of representative protein data sets. Protein Sci. 1992, 1, 409.
2. Hobohm, U.; Sander, C. Enlarged representative set of protein structures. Protein Sci. 1994, 3, 522.
3. Griep, S.; Hobohm, U. PDBselect 1992-2009 and PDBfilter-select. Nucleic Acids Res. 2010, 38, D318.
4. Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-6.
5. Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. J. Mol. Biol. 1963, 7, 95-99.
6. Richardson, J. S. β-Sheet Topology and Relatedness of Proteins. Nature 1977, 268, 495-500.
7. Chothia, C. Conformation of Twisted β-Pleated Sheets in Proteins. J. Mol. Biol. 1973, 75, 295-302.
8. Espinosa, J. F.; Syud, F. A.; Gellman, S. H. Analysis of the factors that stabilize a designed two-stranded antiparallel β-sheet. Protein Sci. 2002, 11, 1492-1505.
9. Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino-Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins. Biochemistry 1974, 13, 211-222.
10. Kim, C. W. A.; Berg, J. M. Thermodynamic β-sheet propensities measured using a Zinc-finger host peptide. Nature 1993, 362, 267.
11. Minor, D. L.; Kim, P. S. Measurement of the β-sheet-forming propensities of amino-acids. Nature 1994, 367, 660.
12. Smith, C. K.; Withka, J. M.; Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 1994, 33, 5510.
13. Minor, D. L., Jr.; Kim, P. S. Context is a major determinant of β-sheet propensity. Nature 1994, 371, 264-7.
14. Wilmot, C. M.; Thornton, J. M. Analysis and prediction of the different types of β-turn in proteins. J. Mol. Biol. 1988, 203, 221-32.
15. Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Elongation of the BH8 β-hairpin peptide: Electrostatic interactions in β-hairpin formation and stability. Protein Sci. 2001, 10, 1381-1392.
16. Venkatachalam, C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968, 6, 1425-36.
17. Venkatac.Cm. Stereochemical Criteria for Polypeptides and Proteins .6. Non-Bonded Energy of Polyglycine and Poly-L-Alanine in Crystalline β-Form. Biochim. Biophys. Acta 1968, 168, 411-416.
18. Lewis, P. N.; Momany, F. A.; Scheraga, H. A. Chain Reversals in Proteins. Biochim. Biophys. Acta 1973, 303, 211-229.
19. Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 1981, 34, 167-339.
20. Chou, P. Y.; Fasman, G. D. β-turns in proteins. J. Mol. Biol. 1977, 115, 135-75.
21. Sibanda, B. L.; Blundell, T. L.; Thornton, J. M. Conformation of β-Hairpins in Protein Structures - a Systematic Classification with Applications to Modeling by Homology, Electron-Density Fitting and Protein Engineering. J. Mol. Biol. 1989, 206, 759-777.
22. Hutchinson, E. G.; Thornton, J. M. A Revised Set of Potentials for β-Turn Formation in Proteins. Protein Sci. 1994, 3, 2207-2216.
23. Chou, P. Y.; Fasman, G. D. β-Turns in Proteins. J. Mol. Biol. 1977, 115, 135-175.
24. Wouters, M. A.; Curmi, P. M. G. An Analysis of Side-Chain Interactions and Pair Correlations within Antiparallel β-Sheets - the Differences between Backbone Hydrogen-Bonded and Non-Hydrogen-Bonded Residue Pairs. Proteins-Structure Function and Genetics 1995, 22, 119-131.
25. Syud, F. A.; Stanger, H. E.; Gellman, S. H. Interstrand side chain-side chain interactions in a designed β-hairpin: Significance of both lateral and diagonal pairings. J. Am. Chem. Soc. 2001, 123, 8667-8677.
26.Sibanda, B. L.; Thornton, J. M. β-Hairpin Families in Globular-Proteins. Nature 1985, 316, 170-174.
27. Butterfield, S. M.; Waters, M. L. A designed β-hairpin peptide for molecular recognition of ATP in water. J. Am. Chem. Soc. 2003, 125, 9580-9581.
28. Butterfield, S. M.; Cooper, W. J.; Waters, M. L. Minimalist protein design: A β-hairpin peptide that binds ssDNA. J. Am. Chem. Soc. 2005, 127, 24-25.
29. Stewart, A. L.; Waters, M. L. Structural Effects on ss- and dsDNA Recognition by a β-Hairpin Peptide. ChemBioChem 2009, 10, 539-544.
30. Cline, L. L.; Waters, M. L. Design of a β-hairpin peptide-intercalator conjugate for simultaneous recognition of single stranded and double stranded regions of RNA. Org. Biomol. Chem. 2009, 7, 4622-30.
31. Cline, L. L.; Waters, M. L. Design of a β-hairpin peptide-intercalator conjugate for simultaneous recognition of single stranded and double stranded regions of RNA. Org. Biomol. Chem. 2009, 7, 4622-4630.
32.Athanassiou, Z.; Dias, R. L. A.; Moehle, K.; Dobson, N.; Varani, G.; Robinson, J. A. Structural mimicry of retroviral Tat proteins by constrained, β-hairpin peptidomimetics: Ligands with high affinity and selectivity for viral TAR RNA regulatory elements. J. Am. Chem. Soc. 2004, 126, 6906-6913.
33. Leeper, T. C.; Athanassiou, Z.; Dias, R. L. A.; Robinson, J. A.; Varani, G. TAR RNA recognition by a cyclic peptidomimetic of Tat protein. Biochemistry 2005, 44, 12362-12372.
34. Minor, D. L.; Kim, P. S. Context Is a Major Determinant of β-Sheet Propensity. Nature 1994, 371, 264-267.
35. Otzen, D. E.; Fersht, A. R. Side-chain determinants of β-sheet stability. Biochemistry 1995, 34, 5718-24.
36. Blanco, F. J.; Rivas, G.; Serrano, L. A short linear peptide that folds into a native stable β-hairpin in aqueous solution. Nat. Struct. Biol. 1994, 1, 584-90.
37. Searle, M. S.; Williams, D. H.; Packman, L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native β-hairpin. Nat. Struct. Biol. 1995, 2, 999-1006.
38. Ramirez-Alvarado, M.; Blanco, F. J.; Niemann, H.; Serrano, L. Role of β-turn residues in β-hairpin formation and stability in designed peptides. J. Mol. Biol. 1997, 273, 898-912.
39. Blasie, C. A.; Berg, J. M. Electrostatic interactions across a β-sheet. Biochemistry 1997, 36, 6218-22.
40. Borjesson, U.; Hunenberger, P. H. Effect of mutations involving charged residues on the stability of staphylococcal nuclease: a continuum electrostatics study. Protein Eng. 2003, 16, 831-840.
41. Wells, J. A. Additivity of mutational effects in proteins. Biochemistry 1990, 29, 8509-17.
42. Horovitz, A. Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des. 1996, 1, R121-6.
43. Ramirez-Alvarado, M.; Kortemme, T.; Blanco, F. J.; Serrano, L. β-hairpin and β-sheet formation in designed linear peptides. Bioorg. Med. Chem. 1999, 7, 93-103.
44. Stanger, H. E.; Gellman, S. H. Rules for antiparallel beta-sheet design: D-Pro-Gly is superior to L-Asn-Gly for β-hairpin nucleation. J. Am. Chem. Soc. 1998, 120, 4236-4237.
45. Syud, F. A.; Stanger, H. E.; Gellman, S. H. Interstrand side chain-side chain interactions in a designed β-hairpin: significance of both lateral and diagonal pairings. J. Am. Chem. Soc. 2001, 123, 8667-77.
46. Bax, A.; Davis, D. G. Mlev-17-Based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. J. Magn. Reson. 1985, 65, 355-360.
47. Braunschweiler, L.; Ernst, R. R. Coherence Transfer by Isotropic Mixing - Application to Proton Correlation Spectroscopy. J. Magn. Reson. 1983, 53, 521-528.
48. Volkmer-Engert, R.; Landgraf, C.; Schneider-Mergener, J. Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J. Pept. Res. 1998, 51, 365-369.
49. Aue, W. P.; Bartholdi, E.; Ernst, R. R. Two-Dimensional Spectroscopy - Application to Nuclear Magnetic-Resonance. J. Chem. Phys. 1976, 64, 2229-2246.
50. Bundi, A.; Wuthrich, K. H-1-NMR Parameters of the Common Amino-Acid Residues Measured in Aqueous-Solutions of the Linear Tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 1979, 18, 285-297.
51. Kline, A. D.; Wuthrich, K. Complete sequence-specific 1H nuclear magnetic resonance assignments for the α-amylase polypeptide inhibitor tendamistat from Streptomyces tendae. J. Mol. Biol. 1986, 192, 869-90.
52. Wishart, D. S.; Sykes, B. D.; Richards, F. M. Relationship between Nuclear-Magnetic-Resonance Chemical-Shift and Protein Secondary Structure. J. Mol. Biol. 1991, 222, 311-333.
53. Wishart, D. S.; Sykes, B. D.; Richards, F. M. The Chemical-Shift Index - a Fast and Simple Method for the Assignment of Protein Secondary Structure through Nmr-Spectroscopy. Biochemistry 1992, 31, 1647-1651.
54. Ciani, B.; Jourdan, M.; Searle, M. S. Stabilization of beta-hairpin peptides by salt bridges: role of preorganization in the energetic contribution of weak interactions. J. Am. Chem. Soc. 2003, 125, 9038-47.
55. Karplus, M. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 1963, 85, 2870.
56. Delepierre, M.; Dobson, C. M.; Poulsen, F. M. Studies of β-sheet structure in lysozyme by proton nuclear magnetic resonance. Assignments and analysis of spin-spin coupling constants. Biochemistry 1982, 21, 4756-61.
57. Wishart, D. S.; Bigam, C. G.; Holm, A.; Hodges, R. S.; Sykes, B. D. (1)H, (13)C and (15)N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR 1995, 5, 332.
58. Aue, W. P.; Bartholdi, E.; Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 1976, 64, 2229.
59. Kim, Y. M.; Prestegard, J. H. Measurement of vicinal couplings from cross peaks in COSY spectra. J. Magn. Reson. 1989, 84, 9.
60. Kuo, H.-T.; Fang, C.-J.; Tsai, H.-Y.; Yang, M.-F.; Chang, H.-C.; Liu, S.-L.; Kuo, L.-H.; Wang, W.-R.; Yang, P.-A.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate-containing residues and lysine analogues in a β-hairpin. Biochemistry 2013, 52, 9212-22.
61. Kuo, L.-H.; Li, J.-H.; Kuo, H.-T.; Hung, C.-Y.; Tsai, H.-Y.; Chiu, W.-C.; Wu, C.-H.; Wang, W.-R.; Yang, P.-A.; Yao, Y.-C.; Wong, T. W.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P. Effect of charged amino acid side chain length at non-hydrogen bonded strand positions on β-hairpin stability. Biochemistry 2013, 52, 7785.
62. Bothnerby, A. A.; Stephens, R. L.; Lee, J. M.; Warren, C. D.; Jeanloz, R. W. Structure determination of a tetrasaccharide - transient nuclear overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984, 106, 811.
63. Piotto, M.; Saudek, V.; Sklenar, V. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J. Biomol. NMR 1992, 2, 661.
64. Kiehna, S. E.; Waters, M. L. Sequence dependence of β-hairpin structure: comparison of a salt bridge and an aromatic interaction. Protein Sci. 2003, 12, 2657-67.
3-5. References
1. Wolf, E.; Kim, P. S.; Berger, B. MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci. 1997, 6, 1179-89.
2.Mason, J. M.; Arndt, K. M. Coiled coil domains: Stability, specificity, and biological implications. ChemBioChem 2004, 5, 170-176.
3.O''Shea, E. K.; Klemm, J. D.; Kim, P. S.; Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 1991, 254, 539-44.
4.Wilson, I. A.; Skehel, J. J.; Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature 1981, 289, 366-73.
5.Pauling, L.; Corey, R. B. Compound helical configurations of polypeptide chains: structure of proteins of the α-keratin type. Nature 1953, 171, 59-61.
6.Sodek, J.; Hodges, R. S.; Smillie, L. B.; Jurasek, L. Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc. Natl. Acad. Sci. U. S. A. 1972, 69, 3800-4.
7.Cohen, C.; Parry, D. A. α-helical coiled coils: more facts and better predictions. Science 1994, 263, 488-9.
8.Newman, J. R.; Keating, A. E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 2003, 300, 2097-101.
9.Vinson, C.; Myakishev, M.; Acharya, A.; Mir, A. A.; Moll, J. R.; Bonovich, M. Classification of human bZIP proteins based on dimerization properties. Mol. Cell. Biol. 2002, 22, 6321-35.
10. Ellenberger, T. E.; Brandl, C. J.; Struhl, K.; Harrison, S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein-DNA complex. Cell 1992, 71, 1223-37.
11. Mason, J. M.; Arndt, K. M. Coiled coil domains: stability, specificity, and biological implications. ChemBioChem 2004, 5, 170-6.
12. Woolfson, D. N.; Bartlett, G. J.; Bruning, M.; Thomson, A. R. New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr. Opin. Struct. Biol. 2012, 22, 432-41.
13. Akey, D. L.; Malashkevich, V. N.; Kim, P. S. Buried polar residues in coiled-coil interfaces. Biochemistry 2001, 40, 6352-60.
14. Keller, W.; Konig, P.; Richmond, T. J. Crystal-Structure of a bZIP/DNA Complex at 2.2 A - Determinants of DNA Specific Recognition. J. Mol. Biol. 1995, 254, 657-667.
15. O''Shea, E. K.; Lumb, K. J.; Kim, P. S. Peptide ''Velcro'': design of a heterodimeric coiled coil. Curr. Biol. 1993, 3, 658-67.
16. Lumb, K. J.; Kim, P. S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 1995, 34, 8642-8.
17. Wagschal, K.; Tripet, B.; Lavigne, P.; Mant, C.; Hodges, R. S. The role of position a in determining the stability and oligomerization state of α-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins. Protein Sci. 1999, 8, 2312-29.
18. Tripet, B.; Wagschal, K.; Lavigne, P.; Mant, C. T.; Hodges, R. S. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". J. Mol. Biol. 2000, 300, 377-402.
19. Gonzalez, L., Jr.; Woolfson, D. N.; Alber, T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat. Struct. Biol. 1996, 3, 1011-8.
20. Harbury, P. B.; Zhang, T.; Kim, P. S.; Alber, T. A Switch between 2-Stranded, 3-Stranded and 4-Stranded coiled coils in GCN4 leucine-zipper mutants. Science 1993, 262, 1401-1407.
21. Oakley, M. G.; Hollenbeck, J. J. The design of antiparallel coiled coils. Curr. Opin. Struct. Biol. 2001, 11, 450-457.
22. McClain, D. L.; Woods, H. L.; Oakley, M. G. Design and characterization of a heterodimeric coiled coil that forms exclusively with an antiparallel relative helix orientation. J. Am. Chem. Soc. 2001, 123, 3151-3152.
23. Grigoryan, G.; Keating, A. E. Structural specificity in coiled-coil interactions. Curr. Opin. Struct. Biol. 2008, 18, 477-483.
24. Crick, F. H. C. The Packing of α-Helices - Simple Coiled-Coils. Acta Crystallogr. 1953, 6, 689-697.
25. Hadley, E. B.; Testa, O. D.; Woolfson, D. N.; Gellman, S. H. Preferred side-chain constellations at antiparallel coiled-coil interfaces. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 530-535.
26. Oshaben, K. M.; Salari, R.; McCaslin, D. R.; Chong, L. T.; Horne, W. S. The native GCN4 leucine-zipper domain does not uniquely specify a dimeric oligomerization state. Biochemistry 2012, 51, 9581-91.
27. Oneil, K. T.; Degrado, W. F. A Thermodynamic Scale for the Helix-Forming Tendencies of the Commonly Occurring Amino-Acids. Science 1990, 250, 646-651.
28. Van Deventer, J. A.; Fisk, J. D.; Tirrell, D. A. Homoisoleucine: A Translationally Active Leucine Surrogate of Expanded Hydrophobic Surface Area. ChemBioChem 2011, 12, 700-702.
29. Yoder, N. C.; Yuksel, D.; Dafik, L.; Kumar, K. Bioorthogonal noncovalent chemistry: fluorous phases in chemical biology. Curr. Opin. Chem. Biol. 2006, 10, 576-583.
30. Eriksson, A. E.; Baase, W. A.; Zhang, X. J.; Heinz, D. W.; Blaber, M.; Baldwin, E. P.; Matthews, B. W. Response of a Protein-Structure to Cavity-Creating Mutations and Its Relation to the Hydrophobic Effect. Science 1992, 255, 178-183.
31. Moitra, J.; Szilak, L.; Krylov, D.; Vinson, C. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 1997, 36, 12567-12573.
32. Steinkruger, J. D.; Bartlett, G. J.; Hadley, E. B.; Fay, L.; Woolfson, D. N.; Gellman, S. H. The d ''-d-d '' Vertical Triad Is Less Discriminating Than the a ''-a-a '' Vertical Triad in the Antiparallel Coiled-Coil Dimer Motif. J. Am. Chem. Soc. 2012, 134, 2626-2633.
33. Buer, B. C.; Meagher, J. L.; Stuckey, J. A.; Marsh, E. N. G. Structural basis for the enhanced stability of highly fluorinated proteins. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 4810-4815.
34. Ryan, S. J.; Kennan, A. J. Variable stability heterodimeric coiled-coils from manipulation of electrostatic interface residue chain length. J. Am. Chem. Soc. 2007, 129, 10255-10260.
35. Matousek, W. M.; Ciani, B.; Fitch, C. A.; Garcia-Moreno, B.; Kammerer, R. A.; Alexandrescu, A. T. Electrostatic contributions to the stability of the GCN4 leucine zipper structure. J. Mol. Biol. 2007, 374, 206-219.
36. Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino-Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins. Biochemistry 1974, 13, 211-222.
37. Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A view of the hydrophobic effect. J. Phys. Chem. B 2002, 106, 2812-2812.
38. Montclare, J. K.; Son, S.; Clark, G. A.; Kumar, K.; Tirrell, D. A. Biosynthesis and stability of coiled-coil peptides containing (2S,4R)-5,5,5-trifluoroleucine and (2S,4S)-5,5,5-trifluoroleucine. ChemBioChem 2009, 10, 84-6.
39. Tang, Y.; Ghirlanda, G.; Vaidehi, N.; Kua, J.; Mainz, D. T.; Goddard, I. W.; DeGrado, W. F.; Tirrell, D. A. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 2001, 40, 2790-6.
40. Lee, K. H.; Lee, H. Y.; Slutsky, M. M.; Anderson, J. T.; Marsh, E. N. Fluorous effect in proteins: de novo design and characterization of a four-α-helix bundle protein containing hexafluoroleucine. Biochemistry 2004, 43, 16277-84.
41. Bilgicer, B.; Xing, X.; Kumar, K. Programmed self-sorting of coiled coils with leucine and hexafluoroleucine cores. J. Am. Chem. Soc. 2001, 123, 11815-11816.
42. Bilgicer, B.; Fichera, A.; Kumar, K. A coiled coil with a fluorous core. J. Am. Chem. Soc. 2001, 123, 4393-4399.
43. Tang, Y.; Tirrell, D. A. Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J. Am. Chem. Soc. 2001, 123, 11089-11090.
44. Tang, Y.; Ghirlanda, G.; Vaidehi, N.; Kua, J.; Mainz, D. T.; Goddard, W. A.; DeGrado, W. F.; Tirrell, D. A. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 2001, 40, 2790-2796.
45. Tang, Y.; Ghirlanda, G.; Petka, W. A.; Nakajima, T.; DeGrado, W. F.; Tirrell, D. A. Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angewandte Chemie International Edition 2001, 40, 1494-1496.
46. Bilgicer, B.; Kumar, K. Synthesis and thermodynamic characterization of self-sorting coiled coils. Tetrahedron 2002, 58, 4105-4112.
47. Chiu, H. P.; Suzuki, Y.; Gullickson, D.; Ahmad, R.; Kokona, B.; Fairman, R.; Cheng, R. P. Helix propensity of highly fluorinated amino acids. J. Am. Chem. Soc. 2006, 128, 15556-7.
48. Alber, T. Structure of the leucine zipper. Curr. Opin. Genet. Dev. 1992, 2, 205-10.
49. Grau, B. T.; Devine, P. N.; DiMichele, L. N.; Kosjek, B. Chemo- and enantioselective routes to chiral fluorinated hydroxyketones using ketoreductases. Org. Lett. 2007, 9, 4951-4.
50. Lupas, A. Coiled coils: New structures and new functions. Trends Biochem. Sci 1996, 21, 375-382.
51. Thompson, K. S.; Vinson, C. R.; Freire, E. Thermodynamic Characterization of the Structural Stability of the Coiled-Coil Region of the bZIP Transcription Factor Gcn4. Biochemistry 1993, 32, 5491-5496.
52. Wendt, H.; Berger, C.; Baici, A.; Thomas, R. M.; Bosshard, H. R. Kinetics of Folding of Leucine-Zipper Domains. Biochemistry 1995, 34, 4097-4107.
53. Kohn, W. D.; Kay, C. M.; Sykes, B. D.; Hodges, R. S. Metal ion induced folding of a de novo designed coiled-coil peptide. J. Am. Chem. Soc. 1998, 120, 1124-1132.
54. Moitra, J.; Szilak, L.; Krylov, D.; Vinson, C. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 1997, 36, 12567-73.
55. Bilgicer, B.; Fichera, A.; Kumar, K. A coiled coil with a fluorous core. J. Am. Chem. Soc. 2001, 123, 4393-9.
56. Woll, M. G.; Hadley, E. B.; Mecozzi, S.; Gellman, S. H. Stabilizing and destabilizing effects of phenylalanine --> F5-phenylalanine mutations on the folding of a small protein. J. Am. Chem. Soc. 2006, 128, 15932-3.
57. Chiu, H-P.; Cheng, R. P. Chemoenzymatic synthesis of (S)-hexafluoroleucine and (S)-tetrafluoroleucine. Org. Lett 2007, 9, 5517-20.
58. Hummel, W.; Kula, M. R. Dehydrogenases for the synthesis of chiral compounds. Eur. J. Biochem. 1989, 184, 1-13.






QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top