|
1-5. References 1. Gavin, A. C.; Aloy, P.; Grandi, P.; Krause, R.; Boesche, M.; Marzioch, M.; Rau, C.; Jensen, L. J.; Bastuck, S.; Dumpelfeld, B.; Edelmann, A.; Heurtier, M. A.; Hoffman, V.; Hoefert, C.; Klein, K.; Hudak, M.; Michon, A. M.; Schelder, M.; Schirle, M.; Remor, M.; Rudi, T.; Hooper, S.; Bauer, A.; Bouwmeester, T.; Casari, G.; Drewes, G.; Neubauer, G.; Rick, J. M.; Kuster, B.; Bork, P.; Russell, R. B.; Superti-Furga, G. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440, 631-636. 2.Radzicka, A.; Wolfenden, R. A Proficient Enzyme. Science 1995, 267, 90-93. 3.Muzio, M.; Mantovani, A. Toll-like receptors. Microb. Infect. 2000, 2, 251-255. 4.Nishizuka, Y. The Role of Protein Kinase-C in Cell-Surface Signal Transduction and Tumor Promotion. Nature 1984, 308, 693-698. 5. Pauling, L.; Corey, R. B. The Structure of Hair, Muscle, and Related Proteins. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 261-271. 6. Pauling, L.; Corey, R. B. The Structure of Fibrous Proteins of the Collagen-Gelatin Group. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 272-281. 7. Recalcati, S.; Invernizzi, P.; Arosio, P.; Cairo, G. New functions for an iron storage protein: The role of ferritin in immunity and autoimmunity. J. Autoimmun. 2008, 30, 84-89. 8. Caterina, M. J.; Schumacher, M. A.; Tominaga, M.; Rosen, T. A.; Levine, J. D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389, 816-824. 9. Ananthakrishnan, R.; Ehrlicher, A. The forces behind cell movement. Int. J. Biol. Sci. 2007, 3, 303-317. 10. Gumbiner, B. M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 1996, 84, 345-357. 11. Hegyi, H.; Gerstein, M. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J. Mol. Biol. 1999, 288, 147-164. 12. Chiti, F.; Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem 2006, 75, 333-366. 13. Caughey, B.; Chesebro, B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 1997, 7, 56-62. 14. Pauling, L.; Corey, R. B. The Planarity of the Amide Group in Polypeptides. J. Am. Chem. Soc. 1952, 74, 3964-3964. 15. Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. J. Mol. Biol. 1963, 7, 95-&. 16. Wright, P. E.; Dyson, H. J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 1999, 293, 321-331. 17. Mizushim.Y; Kobayash.M. Effect of Protein Denaturant and Inhibitors against Protein Denaturation on Biological Activity of Antibody. Jpn. J. Exp. Med. 1968, 38, 149-&. 18. Sanger, F.; Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 1951, 49, 481. 19. Sanger, F.; Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 1951, 49, 463. 20. Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-6. 21. Pauling, L.; Corey, R. B.; Branson, H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205. 22. Kendrew, J. C.; Dickerson, R. E.; Strandberg, B. E.; Hart, R. G.; Davies, D. R.; Phillips, D. C.; Shore, V. C. Structure of myoglobin: A three-dimensional fourier synthesis at 2 A resolution. Nature 1960, 185, 422. 23. Fanelli, A. R.; Antonini, E.; Caputo, A. Studies on the structure of hemoglobin 1. physicochemical properties of human globin. Biochim. Biophys. Acta 1958, 30, 608. 24. Klotz, I. M.; Langerma.Nr; Darnall, D. W. Quaternary structure of proteins. Annu. Rev. Biochem. 1970, 39, 25. 25. DeDecker, B. S.; OBrien, R.; Fleming, P. J.; Geiger, J. H.; Jackson, S. P.; Sigler, P. B. The crystal structure of a hyperthermophilic archaeal TATA-box binding protein. J. Mol. Biol. 1996, 264, 1072-1084. 26. Sanger, F. The Arrangement of Amino Acids in Proteins. Adv. Protein Chem. 1952, 7, 1-67. 27. Fields, G. B.; Noble, R. L. Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int. J. Pept. Protein Res. 1990, 35, 161-214. 28. Atherton, E.; Fox, H.; Harkiss, D.; Logan, C. J.; Sheppard, R. C.; Williams, B. J. Mild procedure for solid-phase peptide-synthesis - use of fluorenylmethoxycarbonylamino-acids. J. Chem. Soc. Chem. Comm. 1978, 537-539. 29. Eisenberg, D. The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 11207-11210. 30. Pauling, L.; Corey, R. B.; Branson, H. R. The Structure of Proteins - 2 Hydrogen-Bonded Helical Configurations of the Polypeptide Chain. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205-211. 31. Kabsch, W.; Sander, C. Dictionary of Protein Secondary Structure - Pattern-Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22, 2577-2637. 32. Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino-Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins. Biochemistry 1974, 13, 211-222. 33. Chou, P. Y.; Fasman, G. D. Prediction of protein conformation. Biochemistry 1974, 13, 222. 34. Pauling, L.; Corey, R. B. The Pleated Sheet, a New Layer Configuration of Polypeptide Chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-256. 35. Edsall, J. T.; Flory, P. J.; Kendrew, J. C.; Liquori, A. M.; Nemethy, G.; Ramachan.Gn; Scheraga, H. A. A Proposal of Standard Conventions and Nomenclature for Description of Polypeptide Conformations. J. Mol. Biol. 1966, 15, 399-407. 36. Sibanda, B. L.; Thornton, J. M. β-Hairpin Families in Globular-Proteins. Nature 1985, 316, 170-174. 37. Tanimura, R.; Kidera, A.; Nakamura, H. Determinants of protein side-chain packing. Protein Sci. 1994, 3, 2358. 38. Lee, C.; Subbiah, S. Prediction of potein side-chain conformation by packing optimization. J. Mol. Biol. 1991, 217, 373. 39. Kussell, E.; Shimada, J.; Shakhnovich, E. I. Excluded volume in protein side-chain packing. J. Mol. Biol. 2001, 311, 183. 40. Dill, K. A. Dominant Forces in Protein Folding. Biochemistry 1990, 29, 7133-7155. 41. Pace, C. N.; Shirley, B. A.; McNutt, M.; Gajiwala, K. Forces contributing to the conformational stability of proteins. FASEB J. 1996, 10, 75. 42. Barlow, D. J.; Thornton, J. M. Ion-Pairs in Proteins. J. Mol. Biol. 1983, 168, 867-885. 43. Makhatadze, G. I.; Loladze, V. V.; Ermolenko, D. N.; Chen, X. F.; Thomas, S. T. Contribution of surface salt bridges to protein stability: Guidelines for protein engineering. J. Mol. Biol. 2003, 327, 1135. 44. Perutz, M. F. Electrostatic Effects in Proteins. Science 1978, 201, 1187-1191. 45. Hagler, A. T.; Huler, E.; Lifson, S. Energy Functions for Peptides and Proteins .1. Derivation of a Consistent Force-Field Including Hydrogen-Bond from Amide Crystals. J. Am. Chem. Soc. 1974, 96, 5319-5327. 46. Hagler, A. T.; Lifson, S. Energy Functions for Peptides and Proteins .2. Amide Hydrogen-Bond and Calculation of Amide Crystal Properties. J. Am. Chem. Soc. 1974, 96, 5327-5335. 47. Stickle, D. F.; Presta, L. G.; Dill, K. A.; Rose, G. D. Hydrogen-Bonding in Globular-Proteins. J. Mol. Biol. 1992, 226, 1143-1159. 48. Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A view of the hydrophobic effect (vol 106, pg 523, 2002). J. Phys. Chem. B 2002, 106, 2812-2812. 49. Feinberg, G.; Sucher, J. General Theory of the van der Waals Interaction: A Model-Independent Approach. Phys Rev a-Gen Phys 1970, 2, 2395-2415. 50. Levitt, M.; Gerstein, M.; Huang, E.; Subbiah, S.; Tsai, J. Protein folding: The endgame. Annu. Rev. Biochem 1997, 66, 549-579. 51. Moitra, J.; Szilak, L.; Krylov, D.; Vinson, C. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 1997, 36, 12567-12573. 52. Harbury, P. B.; Zhang, T.; Kim, P. S.; Alber, T. A Switch between 2-Stranded, 3-Stranded and 4-Stranded Coiled Coils in GCN 4 leucine-zipper Mutants. Science 1993, 262, 1401-1407.
2-8. Refernces
1. Hobohm, U.; Scharf, M.; Schneider, R.; Sander, C. Selection of representative protein data sets. Protein Sci. 1992, 1, 409. 2. Hobohm, U.; Sander, C. Enlarged representative set of protein structures. Protein Sci. 1994, 3, 522. 3. Griep, S.; Hobohm, U. PDBselect 1992-2009 and PDBfilter-select. Nucleic Acids Res. 2010, 38, D318. 4. Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-6. 5. Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. J. Mol. Biol. 1963, 7, 95-99. 6. Richardson, J. S. β-Sheet Topology and Relatedness of Proteins. Nature 1977, 268, 495-500. 7. Chothia, C. Conformation of Twisted β-Pleated Sheets in Proteins. J. Mol. Biol. 1973, 75, 295-302. 8. Espinosa, J. F.; Syud, F. A.; Gellman, S. H. Analysis of the factors that stabilize a designed two-stranded antiparallel β-sheet. Protein Sci. 2002, 11, 1492-1505. 9. Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino-Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins. Biochemistry 1974, 13, 211-222. 10. Kim, C. W. A.; Berg, J. M. Thermodynamic β-sheet propensities measured using a Zinc-finger host peptide. Nature 1993, 362, 267. 11. Minor, D. L.; Kim, P. S. Measurement of the β-sheet-forming propensities of amino-acids. Nature 1994, 367, 660. 12. Smith, C. K.; Withka, J. M.; Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 1994, 33, 5510. 13. Minor, D. L., Jr.; Kim, P. S. Context is a major determinant of β-sheet propensity. Nature 1994, 371, 264-7. 14. Wilmot, C. M.; Thornton, J. M. Analysis and prediction of the different types of β-turn in proteins. J. Mol. Biol. 1988, 203, 221-32. 15. Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Elongation of the BH8 β-hairpin peptide: Electrostatic interactions in β-hairpin formation and stability. Protein Sci. 2001, 10, 1381-1392. 16. Venkatachalam, C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968, 6, 1425-36. 17. Venkatac.Cm. Stereochemical Criteria for Polypeptides and Proteins .6. Non-Bonded Energy of Polyglycine and Poly-L-Alanine in Crystalline β-Form. Biochim. Biophys. Acta 1968, 168, 411-416. 18. Lewis, P. N.; Momany, F. A.; Scheraga, H. A. Chain Reversals in Proteins. Biochim. Biophys. Acta 1973, 303, 211-229. 19. Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 1981, 34, 167-339. 20. Chou, P. Y.; Fasman, G. D. β-turns in proteins. J. Mol. Biol. 1977, 115, 135-75. 21. Sibanda, B. L.; Blundell, T. L.; Thornton, J. M. Conformation of β-Hairpins in Protein Structures - a Systematic Classification with Applications to Modeling by Homology, Electron-Density Fitting and Protein Engineering. J. Mol. Biol. 1989, 206, 759-777. 22. Hutchinson, E. G.; Thornton, J. M. A Revised Set of Potentials for β-Turn Formation in Proteins. Protein Sci. 1994, 3, 2207-2216. 23. Chou, P. Y.; Fasman, G. D. β-Turns in Proteins. J. Mol. Biol. 1977, 115, 135-175. 24. Wouters, M. A.; Curmi, P. M. G. An Analysis of Side-Chain Interactions and Pair Correlations within Antiparallel β-Sheets - the Differences between Backbone Hydrogen-Bonded and Non-Hydrogen-Bonded Residue Pairs. Proteins-Structure Function and Genetics 1995, 22, 119-131. 25. Syud, F. A.; Stanger, H. E.; Gellman, S. H. Interstrand side chain-side chain interactions in a designed β-hairpin: Significance of both lateral and diagonal pairings. J. Am. Chem. Soc. 2001, 123, 8667-8677. 26.Sibanda, B. L.; Thornton, J. M. β-Hairpin Families in Globular-Proteins. Nature 1985, 316, 170-174. 27. Butterfield, S. M.; Waters, M. L. A designed β-hairpin peptide for molecular recognition of ATP in water. J. Am. Chem. Soc. 2003, 125, 9580-9581. 28. Butterfield, S. M.; Cooper, W. J.; Waters, M. L. Minimalist protein design: A β-hairpin peptide that binds ssDNA. J. Am. Chem. Soc. 2005, 127, 24-25. 29. Stewart, A. L.; Waters, M. L. Structural Effects on ss- and dsDNA Recognition by a β-Hairpin Peptide. ChemBioChem 2009, 10, 539-544. 30. Cline, L. L.; Waters, M. L. Design of a β-hairpin peptide-intercalator conjugate for simultaneous recognition of single stranded and double stranded regions of RNA. Org. Biomol. Chem. 2009, 7, 4622-30. 31. Cline, L. L.; Waters, M. L. Design of a β-hairpin peptide-intercalator conjugate for simultaneous recognition of single stranded and double stranded regions of RNA. Org. Biomol. Chem. 2009, 7, 4622-4630. 32.Athanassiou, Z.; Dias, R. L. A.; Moehle, K.; Dobson, N.; Varani, G.; Robinson, J. A. Structural mimicry of retroviral Tat proteins by constrained, β-hairpin peptidomimetics: Ligands with high affinity and selectivity for viral TAR RNA regulatory elements. J. Am. Chem. Soc. 2004, 126, 6906-6913. 33. Leeper, T. C.; Athanassiou, Z.; Dias, R. L. A.; Robinson, J. A.; Varani, G. TAR RNA recognition by a cyclic peptidomimetic of Tat protein. Biochemistry 2005, 44, 12362-12372. 34. Minor, D. L.; Kim, P. S. Context Is a Major Determinant of β-Sheet Propensity. Nature 1994, 371, 264-267. 35. Otzen, D. E.; Fersht, A. R. Side-chain determinants of β-sheet stability. Biochemistry 1995, 34, 5718-24. 36. Blanco, F. J.; Rivas, G.; Serrano, L. A short linear peptide that folds into a native stable β-hairpin in aqueous solution. Nat. Struct. Biol. 1994, 1, 584-90. 37. Searle, M. S.; Williams, D. H.; Packman, L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native β-hairpin. Nat. Struct. Biol. 1995, 2, 999-1006. 38. Ramirez-Alvarado, M.; Blanco, F. J.; Niemann, H.; Serrano, L. Role of β-turn residues in β-hairpin formation and stability in designed peptides. J. Mol. Biol. 1997, 273, 898-912. 39. Blasie, C. A.; Berg, J. M. Electrostatic interactions across a β-sheet. Biochemistry 1997, 36, 6218-22. 40. Borjesson, U.; Hunenberger, P. H. Effect of mutations involving charged residues on the stability of staphylococcal nuclease: a continuum electrostatics study. Protein Eng. 2003, 16, 831-840. 41. Wells, J. A. Additivity of mutational effects in proteins. Biochemistry 1990, 29, 8509-17. 42. Horovitz, A. Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des. 1996, 1, R121-6. 43. Ramirez-Alvarado, M.; Kortemme, T.; Blanco, F. J.; Serrano, L. β-hairpin and β-sheet formation in designed linear peptides. Bioorg. Med. Chem. 1999, 7, 93-103. 44. Stanger, H. E.; Gellman, S. H. Rules for antiparallel beta-sheet design: D-Pro-Gly is superior to L-Asn-Gly for β-hairpin nucleation. J. Am. Chem. Soc. 1998, 120, 4236-4237. 45. Syud, F. A.; Stanger, H. E.; Gellman, S. H. Interstrand side chain-side chain interactions in a designed β-hairpin: significance of both lateral and diagonal pairings. J. Am. Chem. Soc. 2001, 123, 8667-77. 46. Bax, A.; Davis, D. G. Mlev-17-Based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. J. Magn. Reson. 1985, 65, 355-360. 47. Braunschweiler, L.; Ernst, R. R. Coherence Transfer by Isotropic Mixing - Application to Proton Correlation Spectroscopy. J. Magn. Reson. 1983, 53, 521-528. 48. Volkmer-Engert, R.; Landgraf, C.; Schneider-Mergener, J. Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J. Pept. Res. 1998, 51, 365-369. 49. Aue, W. P.; Bartholdi, E.; Ernst, R. R. Two-Dimensional Spectroscopy - Application to Nuclear Magnetic-Resonance. J. Chem. Phys. 1976, 64, 2229-2246. 50. Bundi, A.; Wuthrich, K. H-1-NMR Parameters of the Common Amino-Acid Residues Measured in Aqueous-Solutions of the Linear Tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 1979, 18, 285-297. 51. Kline, A. D.; Wuthrich, K. Complete sequence-specific 1H nuclear magnetic resonance assignments for the α-amylase polypeptide inhibitor tendamistat from Streptomyces tendae. J. Mol. Biol. 1986, 192, 869-90. 52. Wishart, D. S.; Sykes, B. D.; Richards, F. M. Relationship between Nuclear-Magnetic-Resonance Chemical-Shift and Protein Secondary Structure. J. Mol. Biol. 1991, 222, 311-333. 53. Wishart, D. S.; Sykes, B. D.; Richards, F. M. The Chemical-Shift Index - a Fast and Simple Method for the Assignment of Protein Secondary Structure through Nmr-Spectroscopy. Biochemistry 1992, 31, 1647-1651. 54. Ciani, B.; Jourdan, M.; Searle, M. S. Stabilization of beta-hairpin peptides by salt bridges: role of preorganization in the energetic contribution of weak interactions. J. Am. Chem. Soc. 2003, 125, 9038-47. 55. Karplus, M. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 1963, 85, 2870. 56. Delepierre, M.; Dobson, C. M.; Poulsen, F. M. Studies of β-sheet structure in lysozyme by proton nuclear magnetic resonance. Assignments and analysis of spin-spin coupling constants. Biochemistry 1982, 21, 4756-61. 57. Wishart, D. S.; Bigam, C. G.; Holm, A.; Hodges, R. S.; Sykes, B. D. (1)H, (13)C and (15)N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR 1995, 5, 332. 58. Aue, W. P.; Bartholdi, E.; Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 1976, 64, 2229. 59. Kim, Y. M.; Prestegard, J. H. Measurement of vicinal couplings from cross peaks in COSY spectra. J. Magn. Reson. 1989, 84, 9. 60. Kuo, H.-T.; Fang, C.-J.; Tsai, H.-Y.; Yang, M.-F.; Chang, H.-C.; Liu, S.-L.; Kuo, L.-H.; Wang, W.-R.; Yang, P.-A.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate-containing residues and lysine analogues in a β-hairpin. Biochemistry 2013, 52, 9212-22. 61. Kuo, L.-H.; Li, J.-H.; Kuo, H.-T.; Hung, C.-Y.; Tsai, H.-Y.; Chiu, W.-C.; Wu, C.-H.; Wang, W.-R.; Yang, P.-A.; Yao, Y.-C.; Wong, T. W.; Huang, S.-J.; Huang, S.-L.; Cheng, R. P. Effect of charged amino acid side chain length at non-hydrogen bonded strand positions on β-hairpin stability. Biochemistry 2013, 52, 7785. 62. Bothnerby, A. A.; Stephens, R. L.; Lee, J. M.; Warren, C. D.; Jeanloz, R. W. Structure determination of a tetrasaccharide - transient nuclear overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984, 106, 811. 63. Piotto, M.; Saudek, V.; Sklenar, V. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J. Biomol. NMR 1992, 2, 661. 64. Kiehna, S. E.; Waters, M. L. Sequence dependence of β-hairpin structure: comparison of a salt bridge and an aromatic interaction. Protein Sci. 2003, 12, 2657-67. 3-5. References 1. Wolf, E.; Kim, P. S.; Berger, B. MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci. 1997, 6, 1179-89. 2.Mason, J. M.; Arndt, K. M. Coiled coil domains: Stability, specificity, and biological implications. ChemBioChem 2004, 5, 170-176. 3.O''Shea, E. K.; Klemm, J. D.; Kim, P. S.; Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 1991, 254, 539-44. 4.Wilson, I. A.; Skehel, J. J.; Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature 1981, 289, 366-73. 5.Pauling, L.; Corey, R. B. Compound helical configurations of polypeptide chains: structure of proteins of the α-keratin type. Nature 1953, 171, 59-61. 6.Sodek, J.; Hodges, R. S.; Smillie, L. B.; Jurasek, L. Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc. Natl. Acad. Sci. U. S. A. 1972, 69, 3800-4. 7.Cohen, C.; Parry, D. A. α-helical coiled coils: more facts and better predictions. Science 1994, 263, 488-9. 8.Newman, J. R.; Keating, A. E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 2003, 300, 2097-101. 9.Vinson, C.; Myakishev, M.; Acharya, A.; Mir, A. A.; Moll, J. R.; Bonovich, M. Classification of human bZIP proteins based on dimerization properties. Mol. Cell. Biol. 2002, 22, 6321-35. 10. Ellenberger, T. E.; Brandl, C. J.; Struhl, K.; Harrison, S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein-DNA complex. Cell 1992, 71, 1223-37. 11. Mason, J. M.; Arndt, K. M. Coiled coil domains: stability, specificity, and biological implications. ChemBioChem 2004, 5, 170-6. 12. Woolfson, D. N.; Bartlett, G. J.; Bruning, M.; Thomson, A. R. New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr. Opin. Struct. Biol. 2012, 22, 432-41. 13. Akey, D. L.; Malashkevich, V. N.; Kim, P. S. Buried polar residues in coiled-coil interfaces. Biochemistry 2001, 40, 6352-60. 14. Keller, W.; Konig, P.; Richmond, T. J. Crystal-Structure of a bZIP/DNA Complex at 2.2 A - Determinants of DNA Specific Recognition. J. Mol. Biol. 1995, 254, 657-667. 15. O''Shea, E. K.; Lumb, K. J.; Kim, P. S. Peptide ''Velcro'': design of a heterodimeric coiled coil. Curr. Biol. 1993, 3, 658-67. 16. Lumb, K. J.; Kim, P. S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 1995, 34, 8642-8. 17. Wagschal, K.; Tripet, B.; Lavigne, P.; Mant, C.; Hodges, R. S. The role of position a in determining the stability and oligomerization state of α-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins. Protein Sci. 1999, 8, 2312-29. 18. Tripet, B.; Wagschal, K.; Lavigne, P.; Mant, C. T.; Hodges, R. S. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". J. Mol. Biol. 2000, 300, 377-402. 19. Gonzalez, L., Jr.; Woolfson, D. N.; Alber, T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat. Struct. Biol. 1996, 3, 1011-8. 20. Harbury, P. B.; Zhang, T.; Kim, P. S.; Alber, T. A Switch between 2-Stranded, 3-Stranded and 4-Stranded coiled coils in GCN4 leucine-zipper mutants. Science 1993, 262, 1401-1407. 21. Oakley, M. G.; Hollenbeck, J. J. The design of antiparallel coiled coils. Curr. Opin. Struct. Biol. 2001, 11, 450-457. 22. McClain, D. L.; Woods, H. L.; Oakley, M. G. Design and characterization of a heterodimeric coiled coil that forms exclusively with an antiparallel relative helix orientation. J. Am. Chem. Soc. 2001, 123, 3151-3152. 23. Grigoryan, G.; Keating, A. E. Structural specificity in coiled-coil interactions. Curr. Opin. Struct. Biol. 2008, 18, 477-483. 24. Crick, F. H. C. The Packing of α-Helices - Simple Coiled-Coils. Acta Crystallogr. 1953, 6, 689-697. 25. Hadley, E. B.; Testa, O. D.; Woolfson, D. N.; Gellman, S. H. Preferred side-chain constellations at antiparallel coiled-coil interfaces. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 530-535. 26. Oshaben, K. M.; Salari, R.; McCaslin, D. R.; Chong, L. T.; Horne, W. S. The native GCN4 leucine-zipper domain does not uniquely specify a dimeric oligomerization state. Biochemistry 2012, 51, 9581-91. 27. Oneil, K. T.; Degrado, W. F. A Thermodynamic Scale for the Helix-Forming Tendencies of the Commonly Occurring Amino-Acids. Science 1990, 250, 646-651. 28. Van Deventer, J. A.; Fisk, J. D.; Tirrell, D. A. Homoisoleucine: A Translationally Active Leucine Surrogate of Expanded Hydrophobic Surface Area. ChemBioChem 2011, 12, 700-702. 29. Yoder, N. C.; Yuksel, D.; Dafik, L.; Kumar, K. Bioorthogonal noncovalent chemistry: fluorous phases in chemical biology. Curr. Opin. Chem. Biol. 2006, 10, 576-583. 30. Eriksson, A. E.; Baase, W. A.; Zhang, X. J.; Heinz, D. W.; Blaber, M.; Baldwin, E. P.; Matthews, B. W. Response of a Protein-Structure to Cavity-Creating Mutations and Its Relation to the Hydrophobic Effect. Science 1992, 255, 178-183. 31. Moitra, J.; Szilak, L.; Krylov, D.; Vinson, C. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 1997, 36, 12567-12573. 32. Steinkruger, J. D.; Bartlett, G. J.; Hadley, E. B.; Fay, L.; Woolfson, D. N.; Gellman, S. H. The d ''-d-d '' Vertical Triad Is Less Discriminating Than the a ''-a-a '' Vertical Triad in the Antiparallel Coiled-Coil Dimer Motif. J. Am. Chem. Soc. 2012, 134, 2626-2633. 33. Buer, B. C.; Meagher, J. L.; Stuckey, J. A.; Marsh, E. N. G. Structural basis for the enhanced stability of highly fluorinated proteins. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 4810-4815. 34. Ryan, S. J.; Kennan, A. J. Variable stability heterodimeric coiled-coils from manipulation of electrostatic interface residue chain length. J. Am. Chem. Soc. 2007, 129, 10255-10260. 35. Matousek, W. M.; Ciani, B.; Fitch, C. A.; Garcia-Moreno, B.; Kammerer, R. A.; Alexandrescu, A. T. Electrostatic contributions to the stability of the GCN4 leucine zipper structure. J. Mol. Biol. 2007, 374, 206-219. 36. Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino-Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins. Biochemistry 1974, 13, 211-222. 37. Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A view of the hydrophobic effect. J. Phys. Chem. B 2002, 106, 2812-2812. 38. Montclare, J. K.; Son, S.; Clark, G. A.; Kumar, K.; Tirrell, D. A. Biosynthesis and stability of coiled-coil peptides containing (2S,4R)-5,5,5-trifluoroleucine and (2S,4S)-5,5,5-trifluoroleucine. ChemBioChem 2009, 10, 84-6. 39. Tang, Y.; Ghirlanda, G.; Vaidehi, N.; Kua, J.; Mainz, D. T.; Goddard, I. W.; DeGrado, W. F.; Tirrell, D. A. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 2001, 40, 2790-6. 40. Lee, K. H.; Lee, H. Y.; Slutsky, M. M.; Anderson, J. T.; Marsh, E. N. Fluorous effect in proteins: de novo design and characterization of a four-α-helix bundle protein containing hexafluoroleucine. Biochemistry 2004, 43, 16277-84. 41. Bilgicer, B.; Xing, X.; Kumar, K. Programmed self-sorting of coiled coils with leucine and hexafluoroleucine cores. J. Am. Chem. Soc. 2001, 123, 11815-11816. 42. Bilgicer, B.; Fichera, A.; Kumar, K. A coiled coil with a fluorous core. J. Am. Chem. Soc. 2001, 123, 4393-4399. 43. Tang, Y.; Tirrell, D. A. Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J. Am. Chem. Soc. 2001, 123, 11089-11090. 44. Tang, Y.; Ghirlanda, G.; Vaidehi, N.; Kua, J.; Mainz, D. T.; Goddard, W. A.; DeGrado, W. F.; Tirrell, D. A. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 2001, 40, 2790-2796. 45. Tang, Y.; Ghirlanda, G.; Petka, W. A.; Nakajima, T.; DeGrado, W. F.; Tirrell, D. A. Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angewandte Chemie International Edition 2001, 40, 1494-1496. 46. Bilgicer, B.; Kumar, K. Synthesis and thermodynamic characterization of self-sorting coiled coils. Tetrahedron 2002, 58, 4105-4112. 47. Chiu, H. P.; Suzuki, Y.; Gullickson, D.; Ahmad, R.; Kokona, B.; Fairman, R.; Cheng, R. P. Helix propensity of highly fluorinated amino acids. J. Am. Chem. Soc. 2006, 128, 15556-7. 48. Alber, T. Structure of the leucine zipper. Curr. Opin. Genet. Dev. 1992, 2, 205-10. 49. Grau, B. T.; Devine, P. N.; DiMichele, L. N.; Kosjek, B. Chemo- and enantioselective routes to chiral fluorinated hydroxyketones using ketoreductases. Org. Lett. 2007, 9, 4951-4. 50. Lupas, A. Coiled coils: New structures and new functions. Trends Biochem. Sci 1996, 21, 375-382. 51. Thompson, K. S.; Vinson, C. R.; Freire, E. Thermodynamic Characterization of the Structural Stability of the Coiled-Coil Region of the bZIP Transcription Factor Gcn4. Biochemistry 1993, 32, 5491-5496. 52. Wendt, H.; Berger, C.; Baici, A.; Thomas, R. M.; Bosshard, H. R. Kinetics of Folding of Leucine-Zipper Domains. Biochemistry 1995, 34, 4097-4107. 53. Kohn, W. D.; Kay, C. M.; Sykes, B. D.; Hodges, R. S. Metal ion induced folding of a de novo designed coiled-coil peptide. J. Am. Chem. Soc. 1998, 120, 1124-1132. 54. Moitra, J.; Szilak, L.; Krylov, D.; Vinson, C. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 1997, 36, 12567-73. 55. Bilgicer, B.; Fichera, A.; Kumar, K. A coiled coil with a fluorous core. J. Am. Chem. Soc. 2001, 123, 4393-9. 56. Woll, M. G.; Hadley, E. B.; Mecozzi, S.; Gellman, S. H. Stabilizing and destabilizing effects of phenylalanine --> F5-phenylalanine mutations on the folding of a small protein. J. Am. Chem. Soc. 2006, 128, 15932-3. 57. Chiu, H-P.; Cheng, R. P. Chemoenzymatic synthesis of (S)-hexafluoroleucine and (S)-tetrafluoroleucine. Org. Lett 2007, 9, 5517-20. 58. Hummel, W.; Kula, M. R. Dehydrogenases for the synthesis of chiral compounds. Eur. J. Biochem. 1989, 184, 1-13.
|