跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾冠權
研究生(外文):Guan-Quan Tzeng
論文名稱:過渡金屬摻雜磷化鈷之合成與應用於電催化水分解之研究
論文名稱(外文):Transition-metal doped cobalt phosphide nanostructures as electrocatalysts for water splitting
指導教授:陳浩銘陳浩銘引用關係
指導教授(外文):Hao-Ming Chen
口試委員:廖尉斯李介仁羅世強
口試委員(外文):Wei-Ssu LiaoJie-Ren LiShyh-Chyang Luo
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:98
中文關鍵詞:水分解雙功能過渡金屬磷化物
外文關鍵詞:water splittingbifuntionaltransition metal phosphides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於全球能源的需求量日益增加且為了達到維護環境與永續利用的概念,科學家們正積極努力地找尋可替代石化燃料之能源,由於氫氣為一乾淨且具高能量密度之燃料,因此電催化水分解產氫被視為具有解決能源危機與環境汙染的最佳方法,而一般具有高催化活性的物質都為貴重金屬居多,基於成本過高與不易取得之問題,限制其大規模的應用,因此找尋可替代貴重金屬之催化劑被視為近年來研究重點。然而在進行電催化水分解時不僅僅只有陰極的產氫反應,同時也包含了陽極的析氧反應,要是能夠發展出可運用在兩極上的材料的話,更是一舉兩得。
在本研究中,我們利用水熱法合成鈷之前驅物與鈷鐵混合之前驅物,然後再搭配化學氣相沈積法將其在充滿磷的氣體下轉變為磷化物,分別應用於水分解之陰極析氫與陽極析氧反應,由於磷化物本身具有金屬的特性,電子較易傳遞,因此在進行陽極產氧反應時,相對於氧化物而言會更加有利。我們再利用添加不同含量的鐵來修飾其形貌與優化其效能,最後再將磷化物附載於碳布上,結合碳布優異的性能,具有可饒性和良好的導電性,使得在進行電催化時,讓電子能夠快速地從碳布傳導至觸媒上,而且又是三維的立體基材,不僅能夠大幅的增加活性表面積,電催化時氣體更容易能夠脫附於電極表面,大幅降低氣泡窒礙活性的問題。經由整體性能的改善後,我們研究出能夠運用於兩極的材料,且性能能夠媲美貴重金屬,對於取代貴重金屬有了更進一步的發展。


Because the global demand for energy rapidly increased in the past decades, scientists are looking for renewable and clean energy with the aim of substituting for fossil fuels. Hydrogen has been considered as a high density energy and clean fuel, so that the electrolysis of water for hydrogen production may be a promising way to solve the energy crisis and environment pollution. However, most of highly active electrocatalysts are commonly precious metal, their major drawbacks are high cost and insufficient reserve that restricts practical application. As a result, developing earth-abundant, active and stable catalysts which can operate in the same electrolyte for water-splitting is important for many renewable energy conversion processes.
In this research, we utilized the gas-solid reaction to synthesize the cobalt phosphide with dopant of iron. Because the transition metal phosphides (TMPs) are characteristic of metallic properties, which can facilitate the water-splitting reaction owing to an effective charge-transfer. The morphology and catalytic capability can be further modified via doping various amount of iron. Finally, combination of the iron doping and carbon cloth as a hybrid material with flexible and conductive properties can facilitate the charge transfer from substrate to catalyst and lead to an enhanced performance. Besides, bubble releasing problem during the reaction can be remarkably suppressed owing to 3D structure of carbon cloth. Consequently, we successfully synthesized the hybrid material that can perform excellent activities toward both the oxygen and hydrogen evolution reaction. These strategies of TMPs are instructive for designing non-noble metal catalysts for future applications.


目錄
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1氫氣能源 2
1.2 氫氣的製備技術 2
1.2.1化石燃料產氫 2
1.2.2光催化製氫 4
1.2.3電催化產氫 5
1.3 電解水之原理 6
1.3.1 電催化還原產氫反應(Hydrogen evolution reaction) 7
1.3.2 電催化氧化產氧反應(Oxygen evolution reaction) 9
1.4 材料活性比較之參數 10
1.4.1 總電極活性量測 11
1.4.2 本質活性量測 13
1.5水分解之陰極發展 13
1.5.1 過渡金屬雙硫屬化合物(transition metal dichalcogenides, TMD) 15
1.5.2 過渡金屬磷化物(transition metal phosphides, TMPs) 18
1.6 水分解陽極之發展 20
1.6.1 過渡金屬氧化物(Transition-metal oxides) 21
1.6.2 非氧化物之材料 23
1.7 雙功能水分解之材料 23
1.8 過渡金屬磷化物合成方法 25
1.8.1 液相合成法(solution-phase reaction)43 25
1.8.2 氣-固反應(gas-solid reaction) 25
1.9 研究動機與目的 26
第二章、實驗步驟與儀器分析原理 27
2.1 化學藥品 27
2.2 實驗步驟 29
2.2.1 碳布的清潔 29
2.2.2 Co(CO3)0.5OH・H2O/CC & CoFe(CO3)OH・H2O/CC(X)之製備 29
2.2.3 CoP/CC & CoFeP(X)/CC之製備 31
2.3 三電極電化學系統 32
2.3.1 工作電極之製備 32
2.3.2 三電極化學系統之組裝 32
2.4儀器分析 33
2.4.1 X射線繞射分析儀 33
2.4.2 X射線繞射原理 33
2.4.3 電子顯微鏡 35
2.4.3.1 掃描式電子顯微鏡(scanning electron microscope, SEM) 35
2.4.3.2 能量散佈X光光譜儀(Energy dispersive X-ray spectrometer, EDS) 37
儀器規格 39

2.4.3.3 穿透式電子顯微鏡(transmission electron microscopy, TEM) 39
2.4.4 同步輻射 41
2.4.4.1同步輻射歷史 41
2.4.4.2 同步輻射光源 42
2.4.5 同步輻射吸收光譜原理 43
2.4.5.1 X光吸收光譜(X-ray absorption spectroscopy, XAS) 43
2.4.5.2 X光吸收光譜簡介 44
2.4.5.3 X光吸收近邊緣結構光譜(X-ray absorption near edge structure, XANES) 46
2.4.5.4 X光延伸精細結構吸收光譜(extended X-ray absorption fine structure, EXAFS) 48
2.4.6 伏安法(voltammetry) 48
2.4.6.1 線性掃描伏安法(linear sweep voltammetry, LSV) 49
2.4.6.2 循環伏安法(cyclic voltammetry, CV) 50
2.4.6.3 電化學阻抗譜(electrochemical impedance spectroscopy, EIS) 51
第三章、結果與討論 52
3.1 磷化鈷奈米線結合碳布之複合材料 52
3.1.1 X射線繞射光譜分析 52
3.1.2 掃描式電子顯微鏡分析 53
3.2 摻雜鐵之磷化鈷奈米片結構結合碳布之複合材料 54
3.2.1 X射線繞射光譜分析 54
3.2.2 掃描式電子顯微鏡分析 56
3.3 同步輻射分析 58
3.4 電化學量測 60
3.4.1 電化學還原產氫反應 61
3.4.2 電化學還原產氧反應 65
3.4.3 電化學阻抗分析 70
3.2.4 電雙層電容(double layer capacitance)活性面積量測 72
3.5 雙功能活性分析 74
第四章、結論 77
第五章、參考文獻 78



1.http://buzzorange.com/techorange/2015/04/16/iot-save-energy/.
2.曲新生, 陳發林, 呂錫民 “氫與儲氫技術” 五南 2007.
3.http://www.kapsom.com/portfolio-items/natural-gas-smr-hydrogen-plant/.
4.Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238, 37-38.
5.Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278.
6.Navarro, R. M.; Alvarez-Galvan, M. C.; Villoria de la Mano, J. A.; Al-Zahrani, S. M.; Fierro, J. L. G. A framework for visible-light water splitting. Energy Environ. Sci. 2010, 3 , 1865-1882.
7.Morales-Guio, C. G.; Stern, L. A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.
8.Nrskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152 , J23-J26.
9.Bockris, J. O''M.; Potter, E. C. The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 1952, 169-186.
10.Mehandru, S. P.; Anderson, A. B. Oxygen evolution on a SrFeO3 anode mechanistic considerations from molecular orbital theory. J. Electrochem. Soc. 1989, 158-166.
11.Tung, C. W.; Hsu, Y. Y.; Shen, Y. P.; Zheng, Y.; Chan, T. S.; Sheu, H. S.; Cheng, Y. C.; Chen, H. M., Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 2015, 6, 8106-8115.
12.Markovic, N. M., Electrocatalysis: interfacing electrochemistry. Nat. Mater. 2013, 12, 101-102.
13.Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957-3971.
14.Wallter, M. G.; Warren, E. L.; McKone, J. R. Solar-water-splitting-cell. Chem. Rev. 2010, 110, 6446-6473.
15.Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916-1923.
16.Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577.
17.Bennett, J. C.; Tributsch, H. Electrochemistry and photochemistry of MoS2 layer crystal. J. Electroanal. Chem. 1977, 81, 97-111.
18.Hinnemann, B.; Moses, P. G.; Bonde, J.; Jrgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nrskov, J. K. Biomimetic hydrogen evolution  MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309.
19.Vesborg, P. C.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951-957.
20.Jaramillo,T. F.; Jorgensen K. P.; Bonde, J.; Nielsen J. H.; Horch,S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007, 317, 100-102.
21.Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.
22.Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science. 2012, 3, 2515-2525.
23.Russell, A. E. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 9-10.
24.Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855.
25.Xu, K.; Wang, F.; Wang, Z.; Zhan, X.; Wang, Q.; Cheng, Z.; Safdar, M.; He, J. Component-controllable WS2(1-x)Se2xnanotubes for efficient hydrogen evolution reaction. ACS Nano. 2014, 8, 8468-8476.
26.Kong, D.; Cha, J. J.; Wang, H.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553.
27.Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the NiFe hydrogenase to the Ni2P(001) surface the importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871-14878.
28.Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267-9270.
29.Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2014, 53, 6710-6714.
30.Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. Engl. 2014, 53, 12855-12859.
31.Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015, 5, 145-149.
32.Caban-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245-1251.
33.Butler, J. "Precious materials handbook". Platinum Metals Review. 2012, 56, 267-270.
34.Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction Mater. Chem. Phys. 1986, 14, 397-426.
35.Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nrskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011, 3, 1159-1165.
36.Matsumoto, Y.; Yamada, S.; Nishida, T. and Sato, E. Oxygen evolution on La1-x Srx Fe1-yCoyO3 series oxides. J. Electrochem. Sac. 1980, 127, 2360-2364.
37.Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521-30.
38.Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In Operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36-39.
39.Stern, L.-A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347-2351.
40.Wang, H.; Lee, H. W.; Deng, Y.; Lu, Z.; Hsu, P. C.; Liu, Y.; Lin, D.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261-7269.
41.Pu, Z.; Luo, Y.; Asiri, A. M.; Sun, X. Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces. 2016, 8, 4718-4723.
42.Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl. Mater. Interfaces. 2016, 8, 12798-12803.
43.Xu, Y.; Wu, R.; Zhang, J.; Shi, Y.; Zhang, B. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2013, 49, 6656-6658.
44.Tian, J.; Liu, Q.; Liang, Y.; Xing, Z.; Asiri, A. M. and Sun, X. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl. Mater. Interfaces. 2014, 6, 20579-20584.
45.Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. Int. Ed. Engl. 2014, 53, 9577-9581.
46.Xiao, P.; Sk, M. A.; Thi, L.; Ge, C.X.; Lim, R.J.; Wang, J,Y.; Lim K H and Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624-2629.
47.Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541.
48.http://highscope.ch.ntu.edu.tw/wordpress/?p=41141.
49.http://li155-94.members.linode.com/myscope/sem/practice/principles/layout.php.
50.http://mcff.mtu.edu/acmal/electronmicroscopy/MA_EDS_Basic_Science.htm.
51.http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter3_report2.pdf.
52.http://www.hk-phy.org/atomic_world/tem/tem02_e.html.
53.http://midcurrent.com/flies/shining-a-light-on-uv-materials/.
54.http://prpc.phys.nthu.edu.tw/reference/6-F2.pdf.
55.Zanella, L. C., F.; Gray, K. A.; Warta, R.; Ma, Q.; Gaillard, J.F. The darkening of zinc yellow: XANES speciation of chromium in artist''s paints after light and chemical exposures. J. Anal. At. Spectrom. 2011, 26, 1090-1097.
56.Hahner, G. Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids. Chem. Soc. Rev. 2006, 35, 1244-1255.
57.Grunwaldt, J.-D.; Baiker, A. In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Phys. Chem. Chem. Phys. 2005, 7, 3526-3539.
58.Koningsberger, D. C. X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988.
59.Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136 , 4897-4900.
60.http://w.pic.com.tw/newsdetail.php?id=1169.
61.Yang, H.; Zhang, Y.; Hu, F.; Wang, Q. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano. Lett. 2015, 15, 7616-7620.
62.http://chemwiki.ucdavis.edu/Core/Inorganic_Chemistry/Coordination_Chemistry/Basics_of_Coordination_Chemistry/Coordination_Numbers_and_Geometry/Jahn-Teller_Distortions
63.Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
64.Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale. 2015, 7, 15122-15126.
65.Ledendecker, M.; Krick Calderon, S.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. Engl. 2015, 54, 12361-12365.
66.Li, J.; Li, J.; Zhou, X.; Xia, Z.; Gao, W.; Ma, Y.; Qu, Y. Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting. ACS Appl. Mater. Interfaces. 2016, 8, 10826-10834.
67.Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963-969.
68.Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943.
69.Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel cobalt binary oxide nanoporous layers. ACS Nano. 2014, 8, 9518-9523.
70.Shen, M.; Ruan, C.; Chen, Y.; Jiang, C.; Ai, K.; Lu, L. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces. 2015, 7, 1207-1218.
71.Liang, H.; Meng, F.; Caban-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano. Lett. 2015, 15, 1421-1427.
72.McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015,137 , 4347-4357.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top