|
1.http://buzzorange.com/techorange/2015/04/16/iot-save-energy/. 2.曲新生, 陳發林, 呂錫民 “氫與儲氫技術” 五南 2007. 3.http://www.kapsom.com/portfolio-items/natural-gas-smr-hydrogen-plant/. 4.Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238, 37-38. 5.Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278. 6.Navarro, R. M.; Alvarez-Galvan, M. C.; Villoria de la Mano, J. A.; Al-Zahrani, S. M.; Fierro, J. L. G. A framework for visible-light water splitting. Energy Environ. Sci. 2010, 3 , 1865-1882. 7.Morales-Guio, C. G.; Stern, L. A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569. 8.Nrskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152 , J23-J26. 9.Bockris, J. O''M.; Potter, E. C. The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 1952, 169-186. 10.Mehandru, S. P.; Anderson, A. B. Oxygen evolution on a SrFeO3 anode mechanistic considerations from molecular orbital theory. J. Electrochem. Soc. 1989, 158-166. 11.Tung, C. W.; Hsu, Y. Y.; Shen, Y. P.; Zheng, Y.; Chan, T. S.; Sheu, H. S.; Cheng, Y. C.; Chen, H. M., Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 2015, 6, 8106-8115. 12.Markovic, N. M., Electrocatalysis: interfacing electrochemistry. Nat. Mater. 2013, 12, 101-102. 13.Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957-3971. 14.Wallter, M. G.; Warren, E. L.; McKone, J. R. Solar-water-splitting-cell. Chem. Rev. 2010, 110, 6446-6473. 15.Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916-1923. 16.Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577. 17.Bennett, J. C.; Tributsch, H. Electrochemistry and photochemistry of MoS2 layer crystal. J. Electroanal. Chem. 1977, 81, 97-111. 18.Hinnemann, B.; Moses, P. G.; Bonde, J.; Jrgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nrskov, J. K. Biomimetic hydrogen evolution MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309. 19.Vesborg, P. C.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951-957. 20.Jaramillo,T. F.; Jorgensen K. P.; Bonde, J.; Nielsen J. H.; Horch,S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007, 317, 100-102. 21.Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299. 22.Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science. 2012, 3, 2515-2525. 23.Russell, A. E. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 9-10. 24.Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855. 25.Xu, K.; Wang, F.; Wang, Z.; Zhan, X.; Wang, Q.; Cheng, Z.; Safdar, M.; He, J. Component-controllable WS2(1-x)Se2xnanotubes for efficient hydrogen evolution reaction. ACS Nano. 2014, 8, 8468-8476. 26.Kong, D.; Cha, J. J.; Wang, H.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553. 27.Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the NiFe hydrogenase to the Ni2P(001) surface the importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871-14878. 28.Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267-9270. 29.Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2014, 53, 6710-6714. 30.Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. Engl. 2014, 53, 12855-12859. 31.Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015, 5, 145-149. 32.Caban-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245-1251. 33.Butler, J. "Precious materials handbook". Platinum Metals Review. 2012, 56, 267-270. 34.Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction Mater. Chem. Phys. 1986, 14, 397-426. 35.Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nrskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011, 3, 1159-1165. 36.Matsumoto, Y.; Yamada, S.; Nishida, T. and Sato, E. Oxygen evolution on La1-x Srx Fe1-yCoyO3 series oxides. J. Electrochem. Sac. 1980, 127, 2360-2364. 37.Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521-30. 38.Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In Operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36-39. 39.Stern, L.-A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347-2351. 40.Wang, H.; Lee, H. W.; Deng, Y.; Lu, Z.; Hsu, P. C.; Liu, Y.; Lin, D.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261-7269. 41.Pu, Z.; Luo, Y.; Asiri, A. M.; Sun, X. Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces. 2016, 8, 4718-4723. 42.Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl. Mater. Interfaces. 2016, 8, 12798-12803. 43.Xu, Y.; Wu, R.; Zhang, J.; Shi, Y.; Zhang, B. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2013, 49, 6656-6658. 44.Tian, J.; Liu, Q.; Liang, Y.; Xing, Z.; Asiri, A. M. and Sun, X. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl. Mater. Interfaces. 2014, 6, 20579-20584. 45.Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. Int. Ed. Engl. 2014, 53, 9577-9581. 46.Xiao, P.; Sk, M. A.; Thi, L.; Ge, C.X.; Lim, R.J.; Wang, J,Y.; Lim K H and Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624-2629. 47.Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541. 48.http://highscope.ch.ntu.edu.tw/wordpress/?p=41141. 49.http://li155-94.members.linode.com/myscope/sem/practice/principles/layout.php. 50.http://mcff.mtu.edu/acmal/electronmicroscopy/MA_EDS_Basic_Science.htm. 51.http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter3_report2.pdf. 52.http://www.hk-phy.org/atomic_world/tem/tem02_e.html. 53.http://midcurrent.com/flies/shining-a-light-on-uv-materials/. 54.http://prpc.phys.nthu.edu.tw/reference/6-F2.pdf. 55.Zanella, L. C., F.; Gray, K. A.; Warta, R.; Ma, Q.; Gaillard, J.F. The darkening of zinc yellow: XANES speciation of chromium in artist''s paints after light and chemical exposures. J. Anal. At. Spectrom. 2011, 26, 1090-1097. 56.Hahner, G. Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids. Chem. Soc. Rev. 2006, 35, 1244-1255. 57.Grunwaldt, J.-D.; Baiker, A. In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Phys. Chem. Chem. Phys. 2005, 7, 3526-3539. 58.Koningsberger, D. C. X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988. 59.Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136 , 4897-4900. 60.http://w.pic.com.tw/newsdetail.php?id=1169. 61.Yang, H.; Zhang, Y.; Hu, F.; Wang, Q. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano. Lett. 2015, 15, 7616-7620. 62.http://chemwiki.ucdavis.edu/Core/Inorganic_Chemistry/Coordination_Chemistry/Basics_of_Coordination_Chemistry/Coordination_Numbers_and_Geometry/Jahn-Teller_Distortions 63.Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590. 64.Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale. 2015, 7, 15122-15126. 65.Ledendecker, M.; Krick Calderon, S.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. Engl. 2015, 54, 12361-12365. 66.Li, J.; Li, J.; Zhou, X.; Xia, Z.; Gao, W.; Ma, Y.; Qu, Y. Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting. ACS Appl. Mater. Interfaces. 2016, 8, 10826-10834. 67.Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963-969. 68.Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943. 69.Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel cobalt binary oxide nanoporous layers. ACS Nano. 2014, 8, 9518-9523. 70.Shen, M.; Ruan, C.; Chen, Y.; Jiang, C.; Ai, K.; Lu, L. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces. 2015, 7, 1207-1218. 71.Liang, H.; Meng, F.; Caban-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano. Lett. 2015, 15, 1421-1427. 72.McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015,137 , 4347-4357.
|