跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林聖智
研究生(外文):Sheng-Chih Lin
論文名稱:具表面電漿共振特性之雙金屬奈米材料合成及應用
論文名稱(外文):Synthesis and Application of Bimetallic Nanomaterial with Surface Plasmon Resonance
指導教授:陳浩銘陳浩銘引用關係
口試委員:林律吟廖尉斯郭聰榮郭俊宏
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:奈米銀結構表面電漿共振氧氣還原反應
外文關鍵詞:silver nanostructurebimetallic materialsurface plasmon resonanceoxygen reduction reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Since bimetallic nanomaterial was credited with far features beyond single metal nanomaterial and has shown much outstanding performances in such fields, energy, biosensors, imaging, it has attracted much attention in nanotechnology recently. The improvement of oxygen reduction reaction (ORR), the cathodic reaction in renewable energy technologies, such as fuel cells, metal-air batteries, and so forth, is of vital importance due to the increasing demands of energy by rising steeply population. The ORR commonly involves four-electron (4e-) transfer to produce water directly, whereas another parallel two-electron (2e-) pathway producing undesired and damaging peroxide species competes against the initial 4e- pathway. Based on above-mentioned conditions, we were about to develop the bimetallic nanomaterial with surface character of surface plasmon resonance to alter the ORR pathways toward 4e- pathway.
Herein, we demonstrated the first empirical evidence of tunable two-/four-electron pathway toward ORR through plasmonic effects (up to 0.2 mA/cm2 enhancement in current density and 4% pathway alternation to 4e-), in which plasmonic Ag-Pt bimetallic nanocages were synthesized with an edgeless feature and a custom-made RDE/RRDE working station was designed to provide unique means by which to realize the plasmonic effects toward the target oxygen reduction reaction. The edgeless Ag-Pt bimetallic nanocages with hollow interior performed newly plasmonic induced effects to alter the reaction pathway of ORR, where the formation of undesired peroxide intermediate was significantly suppressed since the hot electron transfer of Ag nanostructure offered sufficient energy to populate the antibonding orbital of O2. This rapid light-dependent nature corresponding to localized surface plasmon resonance can potentially offer synergetic strategies toward altering the chemical reactions or reaction pathways in various fields.


目錄
目 錄…………………………………………………………………………….....….I
圖目錄…………………………………………………...…………………………..…IV
表目錄………………………………………………………..……………...…………IX

第一章 緒論 1
1.1奈米材料 1
1.1.1小尺寸效應 1
1.1.2表面效應 1
1.1.3量子尺寸效應 2
1.1.4奈米材料於化學催化應用 3
1.1.5奈米材料製備方法 4
1.2表面電漿共振 (Surface Plasmon Resonance; SPR) 7
1.2.1侷限表面電漿共振 (Localized Surface Plasmon Resonance; LSPR) 8
1.2.2銀之表面電漿共振表現 13
1.3氧氣還原反應 (Oxygen Reduction Reaction; ORR) 16
1.3.1反應路徑 16
1.3.2電化學表現 18
1.3.3金屬催化劑於氧氣還原反應 19
1.4本研究目的 21
第二章 實驗步驟與儀器分析原理 22
2.1本研究實驗流程 22
2.2化學藥品 23
2.3雙金屬奈米材料製備 24
2.3.1奈米銀立方 (silver nanocube) 24
2.3.2雙金屬銀鉑奈米材料合成 (AgPt bimetallic nanomaterial) 25
2.4樣品鑑定與分析 26
2.4.1紫外-可見光譜分析儀 (Ultraviolet-visible spectrometer) 27
2.4.2電子顯微鏡 (Electron Microscopy; EM) 29
2.4.3感應耦合電漿質譜分析儀 34
(Inductively Coupled Plasma-Mass Spectrometer; ICP-MS)
2.4.4同步輻射光源 (Synchrotron Radiation) 35
2.5電化學分析 40
2.5.1電化學架設 40
2.5.2循環伏安法 (Cyclic Voltammetry; CV) 45
2.5.3線性掃描伏安法 (Linear Sweeping Voltammetry; LSV) 46
2.5.4定電位測定法 (amperometric i-t curve; i-t) 47
2.6時域有效差分法 (Finite-Difference Time-Domain; FDTD) 48
第三章 結果與討論 49
3.1奈米銀立方製備—還原劑效應 49
3.1.1紫外-可見光譜分析儀分析 50
3.1.2電子顯微鏡分析 52
3.2銀鉑雙金屬奈米材料 55
3.2.1紫外-可見光譜分析 56
3.2.2電子顯微鏡分析 58
3.2.3感應耦合電漿質譜分析 61
3.3氧氣還原反應之催化活性探討 62
3.3.1氮氣環境下之氧氣還原反應性 62
3.3.2氧氣環境下之氧氣還原反應性 65
3.3.3光照對於氧氣還原反應路徑影響 70
3.3.4單波長雷射對所製備樣品—AgPt-30之氧氣還原反應影響 78
3.4反應路徑改變機制探討 80
3.4.1加熱於氧氣還原反應影響 81
3.4.2臨場X-ray吸收光譜測量 86
3.4.3時域有效差分法模擬 88
3.4.4反應路徑改變機制 90
第四章 結論 94

參考文獻 96



1. 張立德, 奈米材料, 五南圖書出版股份有限公司: 2002.
2. Xiong, Y.; Washio, I.; Chen, J.; Sadilek, M.; Xia, Y., Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. Angew. Chem. Int. Ed. Engl. 2007, 46 (26), 4917-21.
3. Klabunde, K. J.; Stark, J.; Koper, O.; Mohs, C.; Park, D. G.; Decker, S.; Jiang, Y.; Lagadic, I.; Zhang, D. J., Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. J. Phys. Chem. 1996, 100 (30), 12142-12153.
4. Kubo, R., Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17 (6), 975-986.
5. Nalwa, H. S., Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers: 2003.
6. 閻子峰, 奈米催化技術, 五南圖書出版股份有限公司: 2004.
7. Liu, M. H.; Yu, W. Y.; Liu, H. F.; Zheng, J. M., Preparation and Characterization of Polymer-Stabilized Ruthenium–Platinum and Ruthenium–Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene. J. Colloid Interface Sci. 1999, 214 (2), 231-237.
8. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R., Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007, 315 (5809), 220-222.
9. 郭清癸; 黃俊傑; 牟中原, 金屬奈米粒子的製造. 物理雙月刊 (廿三卷六期) 2001, 614-624.
10. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
11. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116 (16), 7401-7402.
12. Zhang, Q.; Han, L.; Jing, H.; Blom, D. A.; Lin, Y.; Xin, H. L.; Wang, H., Facet Control of Gold Nanorods. ACS Nano 2016.
13. Enoch, S.; Bonod, N., Plasmonics: From Basics to Advanced Topics, Springer Berlin Heidelberg: 2012.
14. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106 (5), 874-881.
15. Moskovits, M., Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57 (3), 783-826.
16. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-97.
17. Li, M.; Cushing, S. K.; Wu, N., Plasmon-enhanced optical sensors: a review. Analyst 2015, 140 (2), 386-406.
18. Kreibig, U.; Vollmer, M., Optical properties of metal clusters. Springer: 1995.
19. Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10 (12), 911-21.
20. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76 (4), 046401.
21. Brongersma, M. L.; Halas, N. J.; Nordlander, P., Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10 (1), 25-34.
22. Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S., Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001, 64 (23).
23. Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D., Heterogenous Catalysis Mediated by Plasmon Heating. Nano Lett. 2009, 9 (12), 4417-23.
24. Takami, A.; Kurita, H.; Koda, S., Laser-Induced Size Reduction of Noble Metal Particles. J. Phys. Chem. B 1999, 103 (8), 1226-1232.
25. Christopher, P.; Xin, H.; Linic, S., Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3 (6), 467-72.
26. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 2014, 8 (2), 95-103.
27. Zhao, G.; Kozuka, H.; Yoko, T., Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 1996, 277 (1-2), 147-154.
28. Hirakawa, T.; Kamat, P. V., Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters. Langmuir 2004, 20 (14), 5645-7.
29. Sonnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P., Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 2002, 88 (7), 077402.
30. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111 (6), 3669-712.
31. Ru, E. L.; Etchegoin, P., Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier Science: 2008.
32. Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. Springer London: 2008.
33. Blizanac, B. B.; Lucas, C. A.; Gallagher, M. E.; Arenz, M.; Ross, P. N.; Markovic, N. M., Anion Adsorption, CO Oxidation, and Oxygen Reduction Reaction on a Au(100) Surface- The pH Effect. J. Phys. Chem. B 2004, 108 (2), 625-634.
34. Awad, M. I.; Ohsaka, T., An electrocatalytic oxygen reduction by copper nanoparticles-modified Au(100)-rich polycrystalline gold electrode in 0.5 M KOH. J. Power Sources 2013, 226, 306-312.
35. Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S., Earth-Abundant Nanomaterials for Oxygen Reduction. Angew. Chem. Int. Ed. Engl. 2016, 55 (8), 2650-76.
36. Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z., Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5 (8), 4643-4667.
37. Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
38. Tang, H.; Chen, J. H.; Huang, Z. P.; Wang, D. Z.; Ren, Z. F.; Nie, L. H.; Kuang, Y. F.; Yao, S. Z., High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 2004, 42 (1), 191-197.
39. Yang, H.; Coutanceau, C.; Leger, J.-M.; Alonso-Vante, N.; ClaudeLamy, Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J. Electroanal. Chem. 2005, 576 (2), 305-313.
40. Chen, A.; Holt-Hindle, P., Platinum-Based Nanostructured Materials- Synthesis, Properties, and Applications. Chem. Rev. 2010, 110 (6), 3767-804.
41. Genies, L.; Faure, R.; Durand, R., Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim. Acta 1998, 44 (8-9), 1317-1327.
42. Sepa, D.; Vojnovic, M.; Damjanov.A, oxygen reduction at silver electrodes in alkaline solutions. Electrochim. Acta 1970, 15 (8), 1355-&.
43. Blizanac, B. B.; Ross, P. N.; ́, N. M. M., Oxygen Reduction on Silver Low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring. J. Phys. Chem. B 2006, 110 (10), 4735-41.
44. Fahlman, B. D., Materials Chemistry. Springer: 2007.
45. Williams, D. B.; Carter, C. B., Transmission Electron Microscopy: A Textbook for Materials Science. Springer: 2009.
46. Taylor, H. E., Inductively Coupled Plasma-Mass Spectrometry: Practices and Techniques. Elsevier Science: 2000.
47. Schnohr, C. S.; Ridgway, M. C., X-Ray Absorption Spectroscopy of Semiconductors. Springer Berlin Heidelberg: 2014.
48. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. Wiley: 2000.
49. Taflove, A.; Hagness, S. C., Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House: 2000.
50. Yee, K. S., Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas. Propag. 1966, 14 (3), 6.
51.Tao, A.; Sinsermsuksakul, P.; Yang, P., Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2 (7), 435-40.
52.Tao, A.; Sinsermsuksakul, P.; Yang, P., Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. Engl. 2006, 45 (28), 4597-601.
53.Sun, Y. G.; Xia, Y. N., Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126 (12), 3892-3901.
54. Li, J.; Liu, J.; Yang, Y.; Qin, D., Bifunctional Ag@Pd-Ag Nanocubes for Highly Sensitive Monitoring of Catalytic Reactions by Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137 (22), 7039-42.
55. Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z. Y.; Xia, Y., Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5 (10), 2058-62.
56. Sara E. Skrabalak; Jingyi Chen; Yugang Sun; Xianmao Lu; Leslie Au; Claire M. Cobley; Xia, Y., Gold Nanocages: Synthesis, Properties, and Applications. Acc. Chem. Res. 2008, 41 (12), 9.
57. Averitt, R. D.; Westcott, S. L.; Halas, N. J., Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 1999, 16 (10), 1824-1832.
58. Wang, Y.; Balbuena, P. B., Design of Oxygen Reduction Bimetallic Catalysts- Ab-Initio-Derived Thermodynamic Guidelines. J. Phys. Chem. B 2005, 109 (40), 5.
59. Alia, S. M.; Duong, K.; Liu, T.; Jensen, K.; Yan, Y., Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 2012, 5 (8), 1619-24.
60. Rodriguez, J. M. D.; Melian, J. A. H.; Pena, J. P., Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry. J. Chem. Educ. 2000, 77 (9), 1195-1197.
61. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M., Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14 (6), 567-76.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top