1. 張立德, 奈米材料, 五南圖書出版股份有限公司: 2002.
2. Xiong, Y.; Washio, I.; Chen, J.; Sadilek, M.; Xia, Y., Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. Angew. Chem. Int. Ed. Engl. 2007, 46 (26), 4917-21.
3. Klabunde, K. J.; Stark, J.; Koper, O.; Mohs, C.; Park, D. G.; Decker, S.; Jiang, Y.; Lagadic, I.; Zhang, D. J., Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. J. Phys. Chem. 1996, 100 (30), 12142-12153.
4. Kubo, R., Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17 (6), 975-986.
5. Nalwa, H. S., Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers: 2003.
6. 閻子峰, 奈米催化技術, 五南圖書出版股份有限公司: 2004.
7. Liu, M. H.; Yu, W. Y.; Liu, H. F.; Zheng, J. M., Preparation and Characterization of Polymer-Stabilized Ruthenium–Platinum and Ruthenium–Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene. J. Colloid Interface Sci. 1999, 214 (2), 231-237.
8. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R., Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007, 315 (5809), 220-222.
9. 郭清癸; 黃俊傑; 牟中原, 金屬奈米粒子的製造. 物理雙月刊 (廿三卷六期) 2001, 614-624.10. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
11. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116 (16), 7401-7402.
12. Zhang, Q.; Han, L.; Jing, H.; Blom, D. A.; Lin, Y.; Xin, H. L.; Wang, H., Facet Control of Gold Nanorods. ACS Nano 2016.
13. Enoch, S.; Bonod, N., Plasmonics: From Basics to Advanced Topics, Springer Berlin Heidelberg: 2012.
14. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106 (5), 874-881.
15. Moskovits, M., Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57 (3), 783-826.
16. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-97.
17. Li, M.; Cushing, S. K.; Wu, N., Plasmon-enhanced optical sensors: a review. Analyst 2015, 140 (2), 386-406.
18. Kreibig, U.; Vollmer, M., Optical properties of metal clusters. Springer: 1995.
19. Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10 (12), 911-21.
20. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76 (4), 046401.
21. Brongersma, M. L.; Halas, N. J.; Nordlander, P., Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10 (1), 25-34.
22. Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S., Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001, 64 (23).
23. Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D., Heterogenous Catalysis Mediated by Plasmon Heating. Nano Lett. 2009, 9 (12), 4417-23.
24. Takami, A.; Kurita, H.; Koda, S., Laser-Induced Size Reduction of Noble Metal Particles. J. Phys. Chem. B 1999, 103 (8), 1226-1232.
25. Christopher, P.; Xin, H.; Linic, S., Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3 (6), 467-72.
26. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 2014, 8 (2), 95-103.
27. Zhao, G.; Kozuka, H.; Yoko, T., Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 1996, 277 (1-2), 147-154.
28. Hirakawa, T.; Kamat, P. V., Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters. Langmuir 2004, 20 (14), 5645-7.
29. Sonnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P., Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 2002, 88 (7), 077402.
30. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111 (6), 3669-712.
31. Ru, E. L.; Etchegoin, P., Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier Science: 2008.
32. Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. Springer London: 2008.
33. Blizanac, B. B.; Lucas, C. A.; Gallagher, M. E.; Arenz, M.; Ross, P. N.; Markovic, N. M., Anion Adsorption, CO Oxidation, and Oxygen Reduction Reaction on a Au(100) Surface- The pH Effect. J. Phys. Chem. B 2004, 108 (2), 625-634.
34. Awad, M. I.; Ohsaka, T., An electrocatalytic oxygen reduction by copper nanoparticles-modified Au(100)-rich polycrystalline gold electrode in 0.5 M KOH. J. Power Sources 2013, 226, 306-312.
35. Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S., Earth-Abundant Nanomaterials for Oxygen Reduction. Angew. Chem. Int. Ed. Engl. 2016, 55 (8), 2650-76.
36. Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z., Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5 (8), 4643-4667.
37. Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
38. Tang, H.; Chen, J. H.; Huang, Z. P.; Wang, D. Z.; Ren, Z. F.; Nie, L. H.; Kuang, Y. F.; Yao, S. Z., High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 2004, 42 (1), 191-197.
39. Yang, H.; Coutanceau, C.; Leger, J.-M.; Alonso-Vante, N.; ClaudeLamy, Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J. Electroanal. Chem. 2005, 576 (2), 305-313.
40. Chen, A.; Holt-Hindle, P., Platinum-Based Nanostructured Materials- Synthesis, Properties, and Applications. Chem. Rev. 2010, 110 (6), 3767-804.
41. Genies, L.; Faure, R.; Durand, R., Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim. Acta 1998, 44 (8-9), 1317-1327.
42. Sepa, D.; Vojnovic, M.; Damjanov.A, oxygen reduction at silver electrodes in alkaline solutions. Electrochim. Acta 1970, 15 (8), 1355-&.
43. Blizanac, B. B.; Ross, P. N.; ́, N. M. M., Oxygen Reduction on Silver Low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring. J. Phys. Chem. B 2006, 110 (10), 4735-41.
44. Fahlman, B. D., Materials Chemistry. Springer: 2007.
45. Williams, D. B.; Carter, C. B., Transmission Electron Microscopy: A Textbook for Materials Science. Springer: 2009.
46. Taylor, H. E., Inductively Coupled Plasma-Mass Spectrometry: Practices and Techniques. Elsevier Science: 2000.
47. Schnohr, C. S.; Ridgway, M. C., X-Ray Absorption Spectroscopy of Semiconductors. Springer Berlin Heidelberg: 2014.
48. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. Wiley: 2000.
49. Taflove, A.; Hagness, S. C., Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House: 2000.
50. Yee, K. S., Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas. Propag. 1966, 14 (3), 6.
51.Tao, A.; Sinsermsuksakul, P.; Yang, P., Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2 (7), 435-40.
52.Tao, A.; Sinsermsuksakul, P.; Yang, P., Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. Engl. 2006, 45 (28), 4597-601.
53.Sun, Y. G.; Xia, Y. N., Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126 (12), 3892-3901.
54. Li, J.; Liu, J.; Yang, Y.; Qin, D., Bifunctional Ag@Pd-Ag Nanocubes for Highly Sensitive Monitoring of Catalytic Reactions by Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137 (22), 7039-42.
55. Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z. Y.; Xia, Y., Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5 (10), 2058-62.
56. Sara E. Skrabalak; Jingyi Chen; Yugang Sun; Xianmao Lu; Leslie Au; Claire M. Cobley; Xia, Y., Gold Nanocages: Synthesis, Properties, and Applications. Acc. Chem. Res. 2008, 41 (12), 9.
57. Averitt, R. D.; Westcott, S. L.; Halas, N. J., Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 1999, 16 (10), 1824-1832.
58. Wang, Y.; Balbuena, P. B., Design of Oxygen Reduction Bimetallic Catalysts- Ab-Initio-Derived Thermodynamic Guidelines. J. Phys. Chem. B 2005, 109 (40), 5.
59. Alia, S. M.; Duong, K.; Liu, T.; Jensen, K.; Yan, Y., Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 2012, 5 (8), 1619-24.
60. Rodriguez, J. M. D.; Melian, J. A. H.; Pena, J. P., Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry. J. Chem. Educ. 2000, 77 (9), 1195-1197.
61. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M., Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14 (6), 567-76.