(3.238.88.35) 您好!臺灣時間:2021/04/10 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐令翱
研究生(外文):Ling-Ao Hsu
論文名稱:以掃描穿隧顯微術研究Cr(001)單晶表面之苝四甲酸二酐(PTCDA)的排列、電子結構與自旋極化性質
論文名稱(外文):Monolayer Structure, Electronic Properties and Spin-Polarized Properties of Perylenetetracarboxylic-dianhydride (PTCDA) on Cr(001)
指導教授:陳俊顯陳俊顯引用關係
指導教授(外文):Chun-hsien Chen
口試委員:林淑宜陳以文蘇莉真
口試委員(外文):Shu-Yi Lin
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:52
中文關鍵詞:掃描穿隧顯微術掃描穿隧能譜自旋極化掃描穿隧顯微術自旋極化Cr(001)苝四甲酸二酐電荷轉移
外文關鍵詞:Scanning Tunneling MicroscopyScanning Tunneling SpectroscopySpin-Polarized Scanning Tunneling MicroscopySpin-DependentCr(001)PTCDACharge Transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究Cr(001)單晶表面的苝四甲酸二酐(3,4,9,10-perylenetetracarboxylic-dianhydride, PTCDA)單層分子膜的排列、電子結構與自旋極化(spin-polarized)性質。利用超高真空-低溫-掃描穿隧顯微鏡(ultrahigh vacuum-low temperature-scanning tunneling microscope, UHV-LT-STM)進行樣品製備與表面分析。
實驗樣品的準備皆在超高真空環境下進行。藉由熱阻式方式,蒸鍍PTCDA分子至Cr(001)表面獲得PTCDA/Cr(001)樣品。本論文的第一部分使用鎢探針進行STM影像掃描與STS訊號量測,以觀察PTCDA於Cr(001)基材表面的二維排列與電子結構。STM影像顯示PTCDA在Cr(001)表面排列形式的可分為方形(square, S)和人字形(herringbone, HB)兩種。STM於穿隧迴路中連接鎖相放大器(lock-in amplifier)可獲得掃描穿隧能譜(scanning tunneling spectroscopy, STS)。dI/dV能譜顯示PTCDA的最低未占軌域(LUMO)與Cr(001)形成混成態,代表Cr(001)和PTCDA有強作用力,STM影像也確認此結果。經由STS得到兩種排列的dI/dV能譜,顯示兩種排列分子能階一致,此結果經由Atomistix ToolKit (ATK)軟體模擬PTCDA/Cr(001)的能態密度(DOS)比照,確認和實驗值有一樣的結果。
論文的第二部分使用鉻探針取得PTCDA/Cr(001)之STS能譜。於定電流模式下,使用具有磁矩之鉻探針掃描樣品,觀測到相鄰兩層Cr(001)平台測得之高度不同,可呈現樣品具有自旋極化特徵。而掃描相鄰兩層Cr(001)上方的單層PTCDA分子得到穿隧電流也有異同,於dI/dV能譜或得波峰強度也有差異,可知有機分子能被下方具有磁矩之金屬單晶誘發出自旋極化性質。


This thesis presents the investigation of PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) on Cr(001). Monolayer structure of PTCDA was studied by scanning tunneling microscopy (STM); electronic properties of PTCDA were surveyed by scanning tunneling spectroscopy (STS); spin-polarized properties of PTCDA/Cr(001) were measured by Cr tip which possesses magnetic moments. dI/dV spectra of PTCDA on Cr(001) revealed the formation of a hybrid state, indicative of a strong chemical interaction between the adsorbate and substrate. The molecular orbital involved in the hybridization was LUMO (lowest unoccupied molecular orbital), confirmed by topographic images. Topographic images revealed two types of monolayer structures of PTCDA/Cr(001)—square (S) and herringbone (HB) structure. dI/dV spectra also indicated that two types of molecules had the same occupied and unoccupied states. This result was verified with calculation of density of state (DOS) by Atomistix ToolKit (ATK).
Cr tips was applied in spin-polarized scanning tunneling microscopy (SP-STM) experiment. The topographic image of Cr(001) which measured by Cr tip that revealed the different step height of two adjacent Cr layer. This means that the spin-dependent effect was occurred near the Fermi level (EF) dI/dV spectra of PTCDA/Cr(001) unraveled that the two adjacent Cr layer had the different peak intensities in the occupied states This result showed that the organic semiconductor molecules could be induced magnetic moment by the antiferromagnetic substrate.


口試委員會審定書 #
謝辭 i
中文摘要 iii
ABSTRACT iv
總目錄 v
圖目錄 vii
表目錄 ix
Chapter 1 緒論 1
1.1 研究動機 1
1.2 掃描穿隧顯微術原理 2
1.2.1 穿隧效應 4
1.2.2 掃描模式 6
1.3 掃描穿隧顯微能譜原理 7
1.3.1 dI/dV曲線 7
1.3.2 鎖相技術 8
1.3.3 dI/dV圖 9
1.4 自旋極化掃描穿隧顯微術原理 10
1.5 文獻回顧 12
1.5.1 PTCDA與分子鍍膜技術 12
1.5.2 PTCDA在貴金屬表面之研究 14
1.5.3 反鐵磁材料於SP-STM的發展 20
Chapter 2 儀器介紹 25
2.1 超高真空腔體 25
2.1.1 Load-Lock腔 25
2.1.2 準備腔 26
2.1.3 觀察腔 28
2.2 高溫烘烤 28
2.3 STM 32
2.4 鎖相放大器 32
2.5 探針製作 33
Chapter 3 Cr(001)表面的PTCDA 35
3.1 樣品製備 35
3.1.1 Cr(001)單晶表面 35
3.1.2 蒸鍍PTCDA於Cr(001) 37
3.2 PTCDA/Cr(001)二維排列與電子結構 37
3.2.1 PTCDA/Cr(001)混成態 37
3.2.2 PTCDA的單層膜排列 39
3.2.3 PTCDA吸附於不同金屬基材之比較 41
3.3 鉻探針量測PTCDA/Cr(001) 42
3.3.1 自旋相依性影響Cr(001)台階高度 42
3.3.2 PTCDA/Cr(001)的自旋相依性 43
Chapter 4 結論 46
參考文獻 47



[1]The Nobel Prize in Physics 1956.
http://www.nobelprize.org/nobel_prizes/physics/laureates/1956/
(accessed Jun 6, 2016).
[2]Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472-2475.
[3]Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange. Phys. Rev. B 1989, 39, 4828-4830.
[4]Juteräng, D. STM Study of PTCDA on Pb/Si (111) 1× 1, 2012.
[5]Forrest, S. R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. Chem. Rev. 1997, 97, 1793-1896.
[6]Soylu, M.; Yakuphanoglu, F.; Yahia, I. S. Fabrication and Electrical Characteristics of Perylene-3, 4, 9, 10-tetracarboxylic dianhydride/p-GaAs Diode Structure. Microelectron. Reliab. 2012, 52, 1355-1361.
[7]Shen, Z. L.; Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Thompson, M. E. Three-color, Tunable, Organic Light-Emitting Devices. Science 1997, 276, 2009-2011.
[8]Ostrick, J. R.; Dodabalapur, A.; Torsi, L.; Lovinger, A. J.; Kwock, E. W.; Miller, T. M.; Galvin, M.; Berggren, M.; Katz, H. E. Conductivity-type Anisotropy in Molecular Solids. J. Appl. Phys. 1997, 81, 6804-6808.
[9]Oku, T.; Nomura, K.; Suzuki, A.; Kikuchi, K. Effect of Perylenetetracarboxylic dianhydride Layer as a Hole Blocking Layer on Photovoltaic Performance of Poly-vinylcarbazole: C60 Bulk Heterojunction Thin Films. Thin Solid Films 2012, 520, 2545-2548.
[10]Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy. Helv. Phys. Acta 1982, 55, 726-735.
[11]Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982, 49, 57-61.
[12]Schematic View of an STM.
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f9/ScanningTunnelingMicroscope_schematic.png/800px-ScanningTunnelingMicroscope_schematic.png.
(accessed Mar 25, 2016).
[13]Schematic of the Tunneling Arrangement from the Tip to the Sample through the Vacuum Barrier in an STM.
http://www.maths.tcd.ie/~bmurphy/thesis/thesisse3.html
(accessed Jul 14, 2016).
[14]Chen, C. J. Introduction to Scanning Tunneling Microscopy; Oxford University Press: New York, 1993.
[15]Bardeen, J. Observation of ''Scarred'' Wavefunctions in a Quantum Well with Chaotic Electron Dynamics. Phys. Rev. Lett. 1961, 6, 57-59.
[16]Scanning Tunneling Microscopy (STM)
http://www.parkafm.com/index.php/park-spm-modes/94-electrical-properties/241-scanning-tunneling-microscopy-stm
(accessed Mar 27, 2016).
[17]Selloni, A.; Carnevali, P.; Tosatti, E.; Chen, C. D. Voltage-Dependent Scanning-Tunneling Microscopy of a Crystal Surface: Graphite. Phys. Rev. B 1985, 31, 2602-2605.
[18]Stroscio, J. A.; Feenstra, R. M.; Fein, A. P. Electronic Structure of the Si(111) 2 × 1 Surface by Scanning-Tunneling Microscopy. Phys. Rev. Lett. 1986, 57, 2579-2582.
[19]Ternes, M. Scanning Tunneling Spectroscopy at the Single Atom Scale Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, 2006.
[20]Kolesnychenko, O. Yu; Heijnen, G. M. M.; Zhuravlev, A. K.; de Kort, R.; Katsnelson, M. I.; Lichtenstein, A. I.; van Kempen, H. Surface Electronic Structure of Cr(001): Experiment and Theory. Phys. Rev. Lett. 2005, 72, 1-11.
[21]Ikeda, S.; Hayakawa, J.; Ashizawa, Y.; Lee, Y. M.; Miura, K.; Hasegawa, H.; Ohno, H. Tunnel Magnetoresistance of 604% at 300 K by Suppression of Ta Diffusion in CoFeB/MgO/CoFeB Pseudo-Spin-Valves Annealed at High Temperature. Appl. Phys. Lett. 2008, 93, 2508-2508.
[22]Spin Valve Base on GMR Effect.
https://en.wikipedia.org/wiki/Giant_magnetoresistance#/media/File:Spin-valve_GMR.svg
(accessed Jul 14, 2016).
[23]Wiesendanger, R. Spin Mapping at the Nanoscale and Atomic Scale. Rev. Mod. Phys. 2009, 81, 1495-1550.
[24]So, F. F.; Forrest, S. R.; Shi, Y. Q.; Steier, W. H. Quasi‐epitaxial Growth of Organic Multiple Quantum Well Structures by Organic Molecular Beam Deposition. Appl. Phys. Lett. 1990, 56, 674-676.
[25]Mobus, M.; Karl, N.; Kobayashi, T. Structure of Perylene-tetracarboxylic-dianhydride Thin Films on Alkali Halide Crystal Substrates. J. Cryst. Growth 1992, 116, 495-504.
[26]Burrows, P. E.; Zhang, Y.; Haskal, E. I.; Forrest, S. R. Observation and Modeling of Quasiepitaxial Growth of a Crystalline Organic Thin Film. Appl. Phys. Lett. 1992, 61, 2417.
[27]Umbach, E. Characterization of Organic Overlayers on Well-Defined Substrates. Prog. Surf. Sci. 1991, 35, 113-127.
[28]Tautz, F. S. Structure and Bonding of Large Aromatic Molecules on Noble Metal Surfaces: the Example of PTCDA. Prog. Surf. Sci. 2007, 82, 479-520.
[29]Chizhov, I.; Kahn, A.; Scoles, G. Initial growth of 3, 4, 9, 10-Perylenetetracarboxylic-dianhydride (PTCDA) on Au(111): a Scanning Tunneling Microscopy Study. J. Cryst. Growth 2000, 208, 449-458.
[30]Forrest, S. R.; Kaplan, M. L.; Schmidt, P. H. Organic Thin Films for Semiconductor Wafer Diagnostics. Ann. Rev. Mater. Sci. 1987, 17, 189-217.
[31]Nicoara, N.; Román, E.; Gómez-Rodríguez, J. M.; Martín-Gago, J. A.; Méndez, J. Scanning Tunneling and Photoemission Spectroscopies at the PTCDA/Au(111) Interface. Org. Electron. 2006, 7, 287-294.
[32]Glöckler, K.; Seidel, C.; Soukopp, A.; Sokolowski, M.; Umbach, E.; Bohringer, M.; Berndt, R.; Schneider, W. D. Highly Ordered Structures and Submolecular Scanning Tunnelling Microscopy Contrast of PTCDA and DM-PBDCI Monolayers on Ag(111) and Ag(110). Surf. Sci. 1998, 405, 1-20.
[33]Kraft, A.; Temirov, R.; Henze, S. K. M.; Soubatch, S.; Rohlfing, M.; Tautz, F. S. Lateral Adsorption Geometry and Site-specific Electronic Structure of a Large Organic Chemisorbate on a Metal Surface. Phys. Rev. B 2006, 74, 041402.
[34]Duhm, S.; Gerlach, A.; Salzmann, I.; Broker, B.; Johnson, R. L.; Schreiber, F.; Koch, N. PTCDA on Au(111), Ag(111) and Cu(111): Correlation of Interface Charge Transfer to Bonding Distance. Org. Electron. 2008, 9, 111-118.
[35]Wiesendanger, R.; Güntherodt, H. J.; Güntherodt, G.; Gambino, R. J.; Ruf, R. Observation of Vacuum Tunneling of Spin-Polarized Electrons with the Scanning Tunneling Microscope. Phys. Rev. Lett. 1990, 65, 247-250.
[36]Suzuki, Y.; Nabhan, W.; Tanaka, K. Magnetic Domains of Cobalt Ultrathin Films Observed with a Scanning Tunneling Microscope Using Optically Pumped GaAs Tips. Appl. Phys. Lett. 1997, 71, 3153-3155.
[37]Bode, M.; Getzlaff, M.; Wiesendanger, R. Spin-polarized Vacuum Tunneling into the Exchange-Split Surface State of Gd(0001). Phys. Rev. Lett. 1998, 81, 4256-4259.
[38]Murphy, S.; Osing, J.; Shvets, I. V. Atomically Resolved p(3 × 1) Reconstruction on the W(001) Surface Imaged with Magnetic Tips. J. Magn. Magn. Mater. 1999, 199, 686-688.
[39]Murphy, S.; Osing, J.; Shvets, I. V. Fabrication of Submicron-Scale Manganese–Nickel Tips for Spin-Polarized STM Studies. Appl. Surf. Sci. 1999, 145, 497-500.
[40]Wiesendanger, R.; Bürgler, D.; Tarrach, G.; Schaub, T.; Hartmann, U.; Güntherodt, H. J. Recent Advances in Scanning Tunneling Microscopy Involving Magnetic Probes and Samples. Appl. Phys. A 1991, 53, 349-355.
[41]Shvets, I. V.; Wiesendanger, R.; Bürgler, D.; Tarrach, G.; Güntherodt, H. J. Progress towards Spin‐Polarized Scanning Tunneling Microscopy. J. Appl. Phys. 1992, 71, 5489-5499.
[42]Ceballos, S. F.; Mariotto, G.; Murphy, S.; Shvets, I. V. Fabrication of Magnetic STM Probes and Their Application to Studies of the Fe3O4(001) Surface. Surf. Sci. 2003, 523, 131-140.
[43]Kubetzka, A.; Bode, M.; Pietzsch, O.; Wiesendanger, R. Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips. Phys. Rev. Lett. 2002, 88, 057201.
[44]Yang, H.; Smith, A. R.; Prikhodko, M.; Lambrecht, W. R. Atomic-Scale Spin-Polarized Scanning Tunneling Microscopy Applied to Mn3N2(010). Phys. Rev. Lett. 2002, 89, 226101.
[45]Bassi, A. L.; Casari, C. S.; Cattaneo, D.; Donati, F.; Foglio, S.; Passoni, M.; Ciccacci, F. Bulk Cr tips for Scanning Tunneling Microscopy and Spin-Polarized Scanning Tunneling Microscopy. Appl. Phys. Lett. 2007, 91, 173120.
[46]Hänke, T.; Bode, M.; Krause, S.; Berbil-Bautista, L.; Wiesendanger, R. Temperature-Dependent Scanning Tunneling Spectroscopy of Cr(001): Orbital Kondo Resonance Versus Surface State. Phys. Rev. B 2005, 72, 085453.
[47]Klebanoff, L. E.; Victora, R. H.; Falicov, L. M.; Shirley, D. A. Experimental and Theoretical Investigations of Cr(001) Surface Electronic Structure. Phys. Rev. B 1985, 32, 1997-2005.
[48]Wang, J.; Dougherty, D. B. Indirect Coupling of an Organic Semiconductor to a d-orbital Surface State. Phys. Rev. B 2015, 92, 161401.
[49]Kawahara, S. L.; Lagoute, J.; Repain, V.; Chacon, C.; Girard, Y.; Rousset, S. Large Magnetoresistance through a Single Molecule due to a Spin-Split Hybridized Orbital. Nano Lett. 2012, 12, 4558-4563.
[50]Kleiber, M.; Bode, M.; Ravlić, R.; Wiesendanger, R. Topology-Induced Spin Frustrations at the Cr(001) Surface Studied by Spin-Polarized Scanning Tunneling Spectroscopy. Phys. rev. Lett. 2000, 85, 4606-4609.
[51]Eremtchenko, M.; Bauer, D.; Schaefer, J. A.; Tautz, F. S. Polycyclic Aromates on Close-Packed Metal Surfaces: Functionalization, Molecular Chemisorption and Organic Epitaxy. New J. Phys. 2004, 6, 4.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔