跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 17:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范原嘉
研究生(外文):Yuan-Jia Fan
論文名稱:八面體富勒烯的結構探討與局部曲率及彈性理論在富勒烯穩定性的應用
論文名稱(外文):Structures of octahedral fullerenes and the application of discrete local curvature and continuum elastic theory to the study of fullerene''s stability
指導教授:金必耀
指導教授(外文):Bih-Yaw Jin
口試委員:陸駿逸鄭原忠陳振中蘇萬生
口試委員(外文):Chun-Yi David LuYuan-Chung ChengJerry Chun Chung ChanWan-Sheng Su
口試日期:2016-07-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:八面體對稱富勒烯彈性理論石墨烯
外文關鍵詞:octahedral symmetryfullereneelastic theorygraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文分成兩大章,第一章提出了針對sp2純碳分子的彈性模型。除了一般的彈性項,我們加入了高階項、鍵長修正項及緊縛模型項,以期達到更好的預測能力。我們用多個具有不同拓撲特徵的類石墨烯分子,來驗證此模型的可信度,皆得到了不錯的結果。此外,本模型除了密度泛函理論優化結構外,也適用於一些半經驗方法的優化結構。最後我們將此模型用來建構最穩定的C102~C140籠狀富勒烯的預測名單,再以VASP軟體做確認。

第二章則描述了八面體對稱富勒烯的建構方式。在研究其拓撲限制後,我們提出了符合八面體對稱的基本多邊形,並以四個整數組成索引來對應之,並用剪貼方式組合出八面體對稱富勒烯。在進一步研究其組合方式後,我們發現索引的對稱,除了來自於石墨烯的簡單幾何對稱外,還有來自於不同切割方式的切割對稱;並針對於此提出了消去所有對稱以達到一一對應的演算法。

There are two chapters in this dissertation. In Chapter 1, a modified elastic theory for $ ext{sp}^2$ pure carbon molecules has been proposed. The theory includes high order term in curvature, the bond stretching term and the tight-binding correction. The validity of this model has been examined by various graphitic-like molecules with different topology. The model can be applied on DFT (Density Functional Theory) optimized geometry or AIREBO (Adaptive Intermolecular Reactive Empirical Bond-Order) optimized geometry. Finally the most stable fullerene was found by constructing the candidates via the new model first and then verifying by VASP.

In Chapter 2, a construction scheme of octahedral fullerenes has been built. After investigating the topological constraint, a fundamental polygon compatible with the octahedral symmetry was found. The fundamental polygon can be specified by four integers called index. However, the octahedral fullerene does not specified by a unique index and there is redundancy in the indexes which we called index symmetries. Besides symmetries corresponded to the geometrical symmetries of the graphene, there are symmetries originated from different dissection ways of the octahedral fullerenes. Finally all the possible orbits are clarified and an algorithm to eliminate these redundancy has been suggested.


致謝 i
摘要 iii
Abstract v
第一章 純碳 sp2 體系的彈性能之探討 1
第一節 導論 1
第二節 研究方法 6
第2.1小節 分子彈性能 6
第2.2小節 分子系統之離散曲率定義 8
第2.3小節 理論計算方法 9
第三節 計算結果 10
第3.1小節 擬合結果 10
第3.2小節 最穩定富勒烯之預測 10
第四節 結論 14
第二章 八面體對稱富勒烯 21
第一節 導論 21
第二節 八面體富勒烯的拓撲限制 21
第三節 索引對稱 24
第3.1小節 T2分割對稱 25
第3.2小節 T3分割對稱 25
第3.3小節 T4分割對稱 26
第四節 八面體對稱多面體之軌道 27
第4.1小節 一個Ty的情形 28
第4.2小節 兩個以上Ty的情形 28
第4.3小節 一一對應演算法 29
第五節 結論 30
附錄一 曲率簡介 41
附錄二 多面體拓撲公式整理 47
附錄三 一般富勒烯之拓撲性質 51
附錄四 緊縛模型的石墨烯能量 53
附錄五 用以檢驗模型之詳細分子構型 55
附錄六 完整最穩定富勒烯之候選名單 67
參考文獻 75

[1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. C60: Buckminsterfullerene. Nature, 318(6042):162–163, 11 1985.
[2] P. W. Fowler and Manolopoulos D. E. An Atlas of Fullerenes. Dover Publi- cations, 2007.
[3] M. Goldberg. A class of multi-symmetric polyhedra. Tohoku Mathematical Journal, First Series, 43:104–108, 1937.
[4] D. L. D. Caspar and A. Klug. Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia on Quantitative Biology, 27:1–24, 1962.
[5] P. W. Fowler, J. E. Cremona, and J. I. Steer. Systematics of bonding in non-icosahedral carbon clusters. Theoretica chimica acta, 73(1):1–26, 1988.
[6] P. W. Fowler, D. E. Manolopoulos, D. B. Redmond, and R.P. Ryan. Possible symmetries of fullerene structures. Chemical Physics Letters, 202:371–378, 1993.
[7] A. C. Tang and F. Q. Huang. Electronic structures of octahedral fullerenes. Chemical Physics Letters, 263:733–741, 1996.
[8] S. Compernolle and A. Ceulemans. π electronic structure of octahedral triva- lent cages consisting of hexagons and squares. Physics Review B, 71:205407, 2005.
[9] S. Compernolle and A. Ceulemans. Frontier orbitals of trivalent cages: (3,6) cages and (4,6) cages. The Journal of Physical Chemistry A, 109(11):2689– 2697, 2005.
[10] B. I. Dunlap and R. Taylor. Octahedral C48 and uniform strain. The Journal of Physical Chemistry, 98(43):11018–11019, 1994.
[11] P. W. Fowler and K. M. Rogers. Spiral codes and goldberg representations of icosahedral fullerenes and octahedral analogues. Journal of Chemical Infor- mation and Computer Sciences, 41(1):108–111, 2001.
[12] H.-S. Wu and H. Jiao. What is the most stable B24N24 fullerene? Chemical Physics Letters, 386(4–6):369 – 372, 2004.
[13] V. Barone, A. Koller, and G. E. Scuseria. Theoretical nitrogen nmr chemical shifts in octahedral boron nitride cages. The Journal of Physical Chemistry A, 110(37):10844–10847, 2006.
[14] K. M. Rogers, P. W. Fowler, and G. Seifert. Chemical versus steric frustration in boron nitride heterofullerene polyhedra. Chemical Physics Letters, 332(1– 2):43 – 50, 2000.
[15] R. R. Zope, T. Baruah, M. R. Pederson, and B. I. Dunlap. Electronic structure, vibrational stability, infra-red, and raman spectra of B24N24 cages. Chemical Physics Letters, 393(4–6):300 – 304, 2004.
[16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric eld e ect in atomically thin carbon lms. Science, 306(5696):666–669, 2004.
[17] K. Kikuchi, N. Nakahara, M. Honda, S. Suzuki, K. Saito, H. Shiromaru, K. Yamauchi, I. Ikemoto, T. Kuramochi, S. Hino, and Y. Achiba. Separation, detection, and uv/visible absorption spectra of fullerenes; C76, C78, and C84. Chemistry Letters, 20(9):1607–1610, 1991.
[18] K. Kikuchi, N. Nakahara, T. Wakabayashi, M. Honda, H. Matsumiya, T. Moriwaki, S. Suzuki, H. Shiromaru, K. Saito, K. Yamauchi, I. Ikemoto, and Y. Achiba. Isolation and identi cation of fullerene family: C76, C78, C82, C84, C90 and C96. Chemical Physics Letters, 188(3):177 – 180, 1992.
[19] J. Terso . Modeling solid-state chemistry: Interatomic potentials for multi- component systems. Physics Review B Rev. B, 39:5566–5568, 1989.
[20] S. J. Stuart, A. B. Tutein, and J. A. Harrison. A reactive potential for hydro- carbons with intermolecular interactions. The Journal of Chemical Physics, 112(14):6472–6486, 2000.
[21] G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. Mélot. House of graphs: A database of interesting graphs. Discrete Applied Mathematics, 161(1–2):311 – 314, 2013.
[22] L. Xu, W.-S. Cai, and X.-G. Shao. Prediction of low-energy isomers of large fullerenes from C132 to C160. The Journal of Physical Chemistry A, 110(29):9247–9253, 2006.
[23] L. Xu, W.-S. Cai, and X.-G. Shao. Performance of the semiempirical am1, pm3, mndo, and tight-binding methods in comparison with dft method for the large fullerenes C116–C120. Journal of Molecular Structure: THEOCHEM, 817(1–3):35 – 41, 2007.
[24] L. Xu, W.-S. Cai, and X.-G. Shao. Systematic search for energetically favored isomers of large fullerenes c122–c130 and c162–c180. Computational Materials Science, 41(4):522 – 528, 2008.
[25] N. Shao, Y. Gao, S. Yoo, W. An, and X. C. Zeng. Search for lowest-energy fullerenes: C98 to C110. The Journal of Physical Chemistry A, 110(24):7672– 7676, 2006.
[26] N. Shao, Y. Gao, and X. C. Zeng. Search for lowest-energy fullerenes 2: C38 to C80 and C112 to C120. The Journal of Physical Chemistry C, 111(48):17671– 17677, 2007.
[27] J. Terso . Energies of fullerenes. Phys. Rev. B, 46:15546–15549, 1992.
[28] J. Guan, Z. Jin, Z. Zhu, C. Chuang, B.-Y. Jin, and D. Tománek. Local curva- ture and stability of two-dimensional systems. Physics Review B, 90:245403, 2014.
[29] W. Helfrich. Elastic properties of lipid bilayers: Theory and possible experi- ments. Zeitschrift für Naturforschung C, 28:693, 1973.
[30] Lammps o cial webpage. http://lammps.sandia.gov. Accessed: 2016-06-28.
[31] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals.
Physics Review B, 47:558–561, 1993.
[32] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Physics Re- view B, 49:14251–14269, 1994.
[33] G. Kresse and J. Furthmüller. E ciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, 1996.
[34] G. Kresse and J. Furthmüller. E cient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Physics Review B, 54:11169– 11186, 1996.
[35] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physics Review B, 59:1758–1775, 1999.
[36] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1):1–19, 1995.
[37] B. Chan, Y. Kawashima, M. Katouda, T. Nakajima, and K. Hirao. From C60 to in nity: Large-scale quantum chemistry calculations of the heats of formation of higher fullerenes. Journal of the American Chemical Society, 138(4):1420–1429, 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top