跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林尚胤
研究生(外文):Shang-Yin Lin
論文名稱:含異參茚并苯骨架之聚苯胺合成與作為超級電容器電極材料之研究
論文名稱(外文):Synthesis of Isotruxene-incorporated Polyanilines for Application as Electrode Materials of Supercapacitors
指導教授:楊吉水
指導教授(外文):Jye-Shane Yang
口試委員:梁文傑張哲政
口試委員(外文):Man-kit LeungChe-Chen Chang
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:132
中文關鍵詞:異參茚并苯聚苯胺超級電容器
外文關鍵詞:isotruxenepolyanilinesupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超級電容器的電容量遠大於傳統電容器,而與電池相比,其擁有更理想的功率密度、更高的充放電效率,以及更長的使用壽命,使超級電容器成為具有潛力的能量儲存裝置。在眾多的電極材料之中,聚苯胺具有合成簡單、單體的成本低、導電機制易於控制,以及對環境污染較少等優點,使其常用來作為電極材料。但在充放電過程中,聚苯胺薄膜體積會膨脹,進而導致結構的破壞,造成循環穩定度不佳。因此,我們將異參茚并苯分子引入至聚苯胺骨架之中,設計並合成出星形聚合物SIP 與SIA 以及交聯聚合物CI,也合成以參茚并苯為核心之星形聚合物STP 作為對照,探討其對聚苯胺作為超級電容器電極材料的穩定度與電容值
之影響。
我們將聚苯胺和不同比例的聚合物進行表面形態的觀測,星形聚合物與聚苯胺有相似的顆粒堆疊,而交聯聚合物CI 則呈現明顯不同的球形奈米結構。在電化學表現方面,和聚苯胺相比,摻雜異參茚并苯分子後可在維持相同的循環穩定度下提升電容值和能量密度,此原因推測為異參茚并苯分子本身的結構有利於電荷傳遞,這可由和STP 聚合物的比較來佐證;此外,對於循環穩定度的表現無法有效改善,可能是因為表面積和孔洞體積並沒有形成適合離子進出的孔洞,導致穩定度無法提升,但電容值在1000 次掃描後仍比聚苯胺高出許多,能儲存更多的電荷,而有較佳的電化學表現。
根據此研究成果,對於超級電容器電極材料的改良,可以引入如異參茚并苯般具有π 共軛系統的分子;然而,若要改進材料穩定度,可能需要使分子擁有立體的三度空間結構,使其堆疊後能產生孔道,有助於降低離子進出以及高分子鏈體積膨脹所造成的影響,進而使新穎的聚苯胺材料在超級電容器領域上具有更好的應用價值。

Supercapacitors have emerged as a new kind of energy storage device with higher energy density than conventional capacitors and with superior power density
and cyclic stability than batteries. Among the electrode materials for supercapacitors, polyaniline has been a promising candidate because of its simple synthesis, low cost, controllable electrical conductivity, good redox reversibility, and high environmental stability. However, long-term charge/discharge processes cause structural breakdown and, thus, fast capacitance decay of polyaniline. To improve the performance of polyanilines in supercapacitors, we have introduced the two-dimensional isotruxene scaffold to polyaniline to form a series of new polyanilines, including star-shaped SIP and SIA, as well as crosslinked CI. We also synthesized truxene-incorporated star-shaped STP for comparison.
Our results indicate that the morphology of SIP and SIA is similar to that of polyaniline, which contains fibers and granules, but CI shows sphere morphology, attributable to its crosslinked structures. The isotruxene-incorporated polyanilines display higher specific capacitance than the parent polyaniline owing to strong electronic couplings among the branched arms. However, their cyclic stability is similar to parent polyaniline, presumably due to the unchanged intermolecular packing such that no channels are created for the movement of electrolyte ions during charge/discharge processes.
Our results show that introduction of large π-conjugated systems to polyaniline could enhance the electrochemical performance. However, to improve the operation stability, the materials might need to possess nonplanar structures, so that channels for penetration of ions could be generated to reduce the structural deformation. This work may be helpful for future modification and application of novel polyanilines as the electrode materials of supercapacitors.

謝誌.................................................................................................................................i
摘要...............................................................................................................................iv
Abstract ..........................................................................................................................v
目錄...............................................................................................................................vi
圖目錄...........................................................................................................................ix
表目錄..........................................................................................................................xii
附圖目錄.................................................................................................................... xiii
第一章 序論..................................................................................................................1
1-1 能源儲存.........................................................................................................1
1-2 超級電容器簡介.............................................................................................2
1-2-1 超級電容器原理...................................................................................2
1-2-2 超級電容器種類...................................................................................3
1-2-3 超級電容器電極材料分析...................................................................7
1-3 聚苯胺.............................................................................................................8
1-3-1 聚苯胺簡介及導電原理.......................................................................8
1-3-2 聚苯胺的聚合反應機制.....................................................................11
1-3-3 聚苯胺的奈米結構.............................................................................14
1-3-4 聚苯胺的合成方法.............................................................................15
1-3-5 寡聚物添加對聚苯胺奈米結構之影響.............................................17
1-4 聚苯胺在超級電容器上的應用...................................................................18
1-4-1 聚苯胺應用於超級電容器的限制.....................................................18
1-4-2 聚苯胺穩定度的改善方法.................................................................19
1-4-3 混合式超級電容器的利用.................................................................19
1-4-4 導電高分子的奈米結構與表面形態改善.........................................21
1-4-5 聚苯胺高分子鏈本質的改變.............................................................22
1-5 超級電容器的介面化學分析.......................................................................23
1-5-1 介面化學分析.....................................................................................23
1-5-2 掃描式電子顯微鏡.............................................................................24
1-5-3 穿透式電子顯微鏡.............................................................................24
1-5-4 BET 比表面積及孔徑分析儀............................................................25
1-6 超級電容器的電化學分析...........................................................................28
1-6-1 電化學分析介紹.................................................................................28
1-6-2 循環伏安法.........................................................................................29
1-6-3 恆電流充放電法.................................................................................30
1-6-4 電化學阻抗光譜.................................................................................31
1-7 共軛聚合物...................................................................................................33
1-7-1 一維與多維共軛聚合物.....................................................................33
1-7-2 異參茚并苯 (isotruxene) 及其衍生物............................................33
1-8 研究動機.......................................................................................................35
第二章 結果與討論....................................................................................................37
2-1 單體化合物之合成.......................................................................................37
2-1-1 合成策略分析.....................................................................................37
2-1-2 異參茚并苯及其衍生物之合成.........................................................38
2-1-3 參茚并苯及其衍生物之合成.............................................................42
2-2 含異參茚并苯骨架之聚苯胺的聚合與性質鑑定.......................................43
2-2-1 含異參茚并苯骨架之聚苯胺的聚合反應.........................................43
2-2-2 含異參茚并苯骨架之聚苯胺的鑑定.................................................45
2-2-3 含異參茚并苯骨架之聚苯胺的性質量測.........................................49
2-3 含異參茚并苯骨架之聚苯胺的奈米結構及表面形態...............................51
2-3-1 含異參茚并苯骨架之聚苯胺的SEM 影像圖..................................51
2-3-2 含異參茚并苯骨架之聚苯胺的TEM 影像圖..................................54
2-3-3 含異參茚并苯骨架之聚苯胺的奈米結構分析.................................56
2-4 含異參茚并苯骨架之聚苯胺的表面分析...................................................57
2-4-1 含異參茚并苯骨架之聚苯胺的氮氣吸附-脫附等溫曲線與孔徑尺寸分布................................................................................................57
2-5 含異參茚并苯骨架之聚苯胺的電化學分析...............................................58
2-5-1 含異參茚并苯骨架之聚苯胺的循環伏安法分析.............................59
2-5-2 含異參茚并苯骨架之聚苯胺的恆電流充放電法分析.....................63
2-5-3 含異參茚并苯骨架之聚苯胺的電化學阻抗光譜分析.....................67
2-5-4 含異參茚并苯骨架之聚苯胺的循環穩定度分析.............................69
2-5-5 含參茚并苯骨架之聚苯胺的電化學分析比較.................................71
2-5-6 含異參茚并苯骨架之聚苯胺進行循環穩定度掃描前後的SEM影像圖........................................................................................................73
2-6 含異參茚并苯骨架之聚苯胺的元素分析討論...........................................75
第三章 結論................................................................................................................77
第四章 實驗部分........................................................................................................79
4-1 實驗藥品與溶劑...........................................................................................79
4-2 實驗儀器與方法...........................................................................................82
4-2-1 化合物結構鑑定.................................................................................82
4-2-2 純化系統.............................................................................................84
4-2-3 化合物表面化學與熱穩定性質之量測.............................................84
4-2-4 超級電容器電極材料的電化學性質之量測.....................................85
4-3 實驗步驟.......................................................................................................86
4-3-1 異參茚并苯及其衍生物之合成..........................................................86
4-3-2 參茚并苯及其衍生物之合成..............................................................95
參考文獻......................................................................................................................99
附圖............................................................................................................................106

1.http://www.cap-xx.com/resource/energy-storage-technologies/.
2.Becker, H. E., U.S. Patent 1957.
3.https://zh.wikipedia.org/wiki/%E7%94%B5%E5%AE%B9%E5%99%A8.
4.http://tikalon.com/blog/blog.php?article=2012/flow_battery.
5.Tan, Y. B.; Lee, J.-M., Graphene for Supercapacitor Applications. J. Mater. Chem. A 2013, 1, 14814-14843.
6.Pieta, P.; Obraztsov, I.; D''Souza, F.; Kutner, W., Composites of Conducting Polymers and Various Carbon Nanostructures for Electrochemical Supercapacitors. ECS J. Solid State Sci. Technol. 2013, 2, M3120-M3134.
7.Raymundo-Piñero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F., Relationship between the Nanoporous Texture of Activated Carbons and their Capacitance Properties in Different Electrolytes. Carbon 2006, 44, 2498-2507.
8.Shiraishi, S.; Kurihara, H.; Okabe, K.; Hulicova, D.; Oya, A., Electric Double Layer Capacitance of Highly Pure Single-Walled Carbon Nanotubes in Propylene Carbonate Electrolytes. Electrochem. Commun. 2002, 4, 593-598.
9.Nie, C.; Liu, D.; Pan, L.; Liu, Y.; Sun, Z.; Shen, J., Enhanced Capacitive Behavior of Carbon Aerogels/Reduced Graphene Oxide Composite Film for Supercapacitors. Solid State Ionics 2013, 247-248, 66-70.
10.Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
11.Halper, M. S.; Ellenbogen, J. C., Supercapacitors: A Brief Overview, MITRE Nanosystems Group, 2006.
12.Ryu, K. S.; Kim, K. M.; Park, N.-G.; Park, Y. J.; Chang, S. H., Symmetric Redox Supercapacitor with Conducting Polyaniline Electrodes. J. Power Sources 2002, 103, 305-309.
13.Clemente, A.; Panero, S.; Spila, E.; Scrosati, B., Solid-State, Polymer-Based, Redox Capacitors. Solid State Ionics 1996, 85, 273-277.
14.Arbizzani, C.; Mastragostino, M.; Soavib, F., New Trends in Electrochemical Supercapacitors. J. Power Sources 2001, 100, 164-170.
15.Wu, N.-L.; Kuo, S.-L.; Lee, M.-H., Preparation and Optimization of RuO2-Impregnated SnO2 Xerogel Supercapacitor. J. Power Sources 2002, 104, 62-65.
16.Sugimoto, W.; Shibutani, T.; Murakami, Y.; Takasu, Y., Charge Storage Capabilities of Rutile-Type RuO2-VO2 Solid Solution for Electrochemical Supercapacitors. Electrochem. Solid St. 2002, 5, A170-A172.
17.Snook, G. A.; Kao, P.; Best, A. S., Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196, 1-12.
18.Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H., Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783-810.
19.Lota, K.; Khomenko, V.; Frackowiak, E., Capacitance Properties of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotubes Composites. J. Phys. Chem. Solids 2004, 65, 295-301.
20.Snook, G. A.; Chen, G. Z., The Measurement of Specific Capacitances of Conducting Polymers Using the Quartz Crystal Microbalance. J. Electroanal. Chem. 2008, 612, 140-146.
21.Unverdorben, O., Ueber das Verhalten der organischen Körper in höheren Temperaturen. Annalen der Physik 1826, 84, 397-410.
22.Letheby, H., XXIX.- On the Production of a Blue Substance by the Electrolysis of Sulphate of Aniline. J. Chem. Soc. 1862, 15, 161-163.
23.Chiang, J. C.; MacDiarmid, A. G., ''Polyaniline'': Protonic Acid Doping of the Emeraldine Form to the Metallic Regime. Synthetic Met. 1986, 13, 193-205.
24.MacDiarmid, A. G., “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581-2590.
25.Gerard, M.; Chaubey, A.; Malhotra, B. D., Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345-359.
26.Stafström, S.; Brédas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiarmid, A. G., Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59, 1464-1467.
27.MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D., Polyaniline: Electrochemistry and Application to Rechargeable Batteries. Synthetic Met. 1987, 18, 393-398.
28.Mohilner, D. M.; Adams, R. N.; Argersinger, W. J., Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. J. Am. Chem. Soc. 1962, 84, 3618-3622.
29.Wei, Y.; Tang, X.; Sun, Y.; Focke, W. W., A Study of the Mechanism of Aniline Polymerization. J. Polym. Sci. Pol. Chem. 1989, 27, 2385-2396.
30.Wei, Y.; Hariharan, R.; Patel, S. A., Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-Substituted Anilines. Macromolecules 1990, 23, 758-764.
31.Sapurina, I.; Stejskal, J., The Mechanism of the Oxidative Polymerization of Aniline and the Formation of Supramolecular Polyaniline Structures. Polym. Int. 2008, 57, 1295-1325.
32.Stejskal, J.; Sapurina, I.; Trchová, M., Polyaniline Nanostructures and the Role of Aniline Oligomers in their Formation. Prog. Polym. Sci. 2010, 35, 1420-1481.
33.Sapurina, I.; Tenkovtsev, A. V.; Stejskal, J., Conjugated Polyaniline as a Result of the Benzidine Rearrangement. Polym. Int. 2015, 64, 453-465.
34.Geniès, E. M.; Lapkowski, M.; Penneau, J. F., Cyclic Voltammetry of Polyaniline: Interpretation of the Middle Peak. J. Electroanal. Chem. 1988, 249, 97-107.
35.Zhang, X.; Goux, W. J.; Manohar, S. K., Synthesis of Polyaniline Nanofibers by “Nanofiber Seeding”. J. Am. Chem. Soc. 2004, 126, 4502-4503.
36.Trchová, M.; Konyushenko, E. N.; Stejskal, J.; Kovářová, J.; Ćirić-Marjanović, G., The Conversion of Polyaniline Nanotubes to Nitrogen-Containing Carbon Nanotubes and their Comparison with Multi-Walled Carbon Nanotubes. Polym. Degrad. Stabil. 2009, 94, 929-938.
37.Cruz-Silva, R.; Ruiz-Flores, C.; Arizmendi, L.; Romero-García, J.; Arias-Marin, E.; Moggio, I.; Castillon, F. F.; Farias, M. H., Enzymatic Synthesis of Colloidal Polyaniline Particles. Polymer 2006, 47, 1563-1568.
38.Yano, J.; Sanada, K.; Patil, R.; Ooyama, Y.; Komaguchi, K.; Harima, Y., Poly(N-methylaniline) Microsphere Formation and Control of the Average Diameter by Simple Chemical Polymerization. Mater. Chem. Phys. 2007, 106, 279-285.
39.Can, M.; Uzun, S.; Pekmez, N. Ö., Chemical Polymerization of Aniline Using Periodic Acid in Acetonitrile. Synthetic Met. 2009, 159, 1486-1490.
40.Chen, W.-C.; Wen, T.-C.; Hu, C.-C.; Gopalan, A., Identification of Inductive Behavior for Polyaniline via Electrochemical Impedance Spectroscopy. Electrochim. Acta 2002, 47, 1305-1315.
41.Guo, Y.; Zhou, Y., Polyaniline Nanofibers Fabricated by Electrochemical Polymerization: A Mechanistic Study. Eur. Polym. J. 2007, 43, 2292-2297.
42.Wei, Y.; Jang, G.-W.; Chan, C.-C.; Hsueh, K. F.; Hariharan, R.; Patel, S. A.; Whitecar, C. K., Polymerization of Aniline and Alkyl Ring-Substituted Anilines in the Presence of Aromatlc Additives. J. Phys. Chem. 1990, 94, 7716-7721.
43.Zujovic, Z. D.; Wang, Y.; Bowmaker, G. A.; Kaner, R. B., Structure of Ultralong Polyaniline Nanofibers Using Initiators. Macromolecules 2011, 44, 2735-2742.
44.Tran, H. D.; Norris, I.; D’Arcy, J. M.; Tsang, H.; Wang, Y.; Mattes, B. R.; Kaner, R. B., Substituted Polyaniline Nanofibers Produced via Rapid Initiated Polymerization. Macromolecules 2008, 41, 7405-7410.
45.Andrade, E. M.; Molina, F. V.; Florit, M. I.; Posadas, D., Volume Changes of Poly(2-methylaniline) upon Redox Switching Anion and Relaxation Effects. Electrochem. Solid St. 2000, 3, 504-507.
46.Lizarraga, L.; Andrade, E. M. a.; Molina, F. V., Swelling and Volume Changes of Polyaniline upon Redox Switching. J. Electroanal. Chem. 2004, 561, 127-135.
47.Olad, A.; Gharekhani, H., Preparation and Electrochemical Investigation of the Polyaniline/Activated Carbon Nanocomposite for Supercapacitor Applications. Prog. Org. Coat. 2015, 81, 19-26.
48.Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H., Flexible Graphene–Polyaniline Composite Paper for High-Performance Supercapacitor. Energy Environ. Sci. 2013, 6, 1185-1191.
49.Wang, Y.-G.; Li, H.-Q.; Xia, Y.-Y., Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Adv. Mater. 2006, 18, 2619-2623.
50.Wang, X.; Deng, J.; Duan, X.; Liu, D.; Guo, J.; Liu, P., Crosslinked Polyaniline Nanorods with Improved Electrochemical Performance as Electrode Material for Supercapacitors. J. Mater. Chem. A 2014, 2, 12323-12329.
51.Yang, Y.; Chen, S.; Xu, L., Enhanced Conductivity of Polyaniline by Conjugated Crosslinking. Macromol. Rapid. Commun. 2011, 32, 593-597.
52.Smith, K. C. A.; Oatley, C. W., The Scanning Electron Microscope and Its Fields of Application. Brit. J. Appl. Phys. 1955, 6, 391-399.
53.Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K., Electron Microscopy Image Enhanced. Nature 1998, 392, 768-769.
54.Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309-319.
55.Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603-619.
56.Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373-380.
57.Vellacheri, R.; Al-Haddad, A.; Zhao, H.; Wang, W.; Wang, C.; Lei, Y., High Performance Supercapacitor for Efficient Energy Storage under Extreme Environmental Temperatures. Nano Energy 2014, 8, 231-237.
58.Stoller, M. D.; Ruoff, R. S., Best Practice Methods for Determining an Electrode Material''s Performance for Ultracapacitors. Energy Environ. Sci. 2010, 3, 1294-1301.
59.Rubinson, J. F.; Kayinamura, Y. P., Charge Transport in Conducting Polymers: Insights from Impedance Spectroscopy. Chem. Soc. Rev. 2009, 38, 3339-3347.
60.Randles, J. E. B., Kinetics of Rapid Electrode Reactions. Discuss. Faraday Soc. 1947, 1, 11-19.
61.Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977, 16, 578-580.
62.http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/.
63.Sun, X.; Zhou, Y.; Wu, W.; Liu, Y.; Tian, W.; Yu, G.; Qiu, W.; Chen, S.; Zhu, D., X-Shaped Oligothiophenes as a New Class of Electron Donors for Bulk-Heterojunction Solar Cells. J. Phys. Chem. B 2006, 110, 7702-7707.
64.Taerum, T.; Lukoyanova, O.; Wylie, R. G.; Perepichka, D. F., Synthesis, Polymerization, and Unusual Properties of New Star-Shaped Thiophene Oligomers. Org. Lett. 2009, 11, 3230-3233.
65.Lang, K. F.; Zander, M.; Theiling, E. A., Isotruxen. Chem. Ber. 1960, 93, 321-325.
66.Yang, J.-S.; Huang, H.-H.; Ho, J.-H., Electronic Properties of Star-Shaped Oligofluorenes Containing an Isotruxene Core: Interplay of Para and Ortho Conjugation Effects in Phenylene-Based π Systems. J. Phys. Chem. B 2008, 112, 8871-8878.
67.Yang, J.-S.; Lee, Y.-R.; Yan, J.-L.; Lu, M.-C., Synthesis and Properties of a Fluorene-Capped Isotruxene: A New Unsymmetrical Star-Shaped π-System. Org. Lett. 2006, 8, 5813-5816.
68.Yang, J.-S.; Huang, H.-H.; Lin, S.-H., Facile Multistep Synthesis of Isotruxene and Isotruxenone. J. Org. Chem. 2009, 74, 3974-3977.
69.Yang, J.-S.; Huang, H.-H.; Liu, Y.-H.; Peng, S.-M., Synthesis and Electronic Properties of Isotruxene-Derived Star-Shaped Ladder-Type Oligophenylenes: Bandgap Tuning with Two-Dimensional Conjugation. Org. Lett. 2009, 11, 4942-4945.
70.Lin, S.-H.; Hsu, Y.-C.; Lin, J. T.; Lin, C.-K.; Yang, J.-S., Isotruxene-Derived Cone-Shaped Organic Dyes for Dye-Sensitized Solar Cells. J. Org. Chem. 2010, 75, 7877-7886.
71.Liu, T.-A.; Prabhakar, C.; Yu, J.-Y.; Chen, C.-h.; Huang, H.-H.; Yang, J.-S., Star-Shaped Oligothiophenes Containing an Isotruxene Core: Synthesis, Electronic Properties, Electropolymerization, and Film Morphology. Macromolecules 2012, 45, 4529-4539.
72.Dehmlow, E. V.; Kelle, T., Synthesis of New Truxene Derivatives: Possible Precursors of Fullerene Partial Structures? Synthetic Commun. 1997, 27, 2021-2031.
73.Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M., Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures. J. Am. Chem. Soc. 2004, 126, 13695-13702.
74.Trchová, M.; Stejskal, J., Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803-1817.
75.Wang, X.; Liu, D.; Deng, J.; Duan, X.; Guo, J.; Liu, P., Improving Cyclic Stability of Polyaniline by Thermal Crosslinking as Electrode Material for Supercapacitors. RSC Adv. 2015, 5, 78545-78552.
76.Worakitsiri, P.; Pornsunthorntawee, O.; Thanpitcha, T.; Chavadej, S.; Weder, C.; Rujiravanit, R., Synthesis of Polyaniline Nanofibers and Nanotubes via Rhamnolipid Biosurfactant Templating. Synthetic Met. 2011, 161, 298-306.
77.Sinha, S.; Bhadra, S.; Khastgir, D., Effect of Dopant Type on the Properties of Polyaniline. J. Appl. Polym. Sci. 2009, 112, 3135-3140.
78.Fusalba, F.; Be´langer, D., Electropolymerization of Polypyrrole and Polyaniline-Polypyrrole from Organic Acidic Medium. J. Phys. Chem. B 1999, 103, 9044-9054.
79.Chan, H. S. O.; Ng, S. C.; Sim, W. S.; Tan, K. L.; Tan, B. T. G., Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-Doping by X-ray Photoelectron Spectroscopy. Macromolecules 1992, 25, 6029-6034.
80.Palaniappan, S.; Narayana, B. H., Temperature Effect on Conducting Polyaniline Salts: Thermal and Spectral Studies. J. Polym. Sci. Pol. Chem. 1994, 32, 2431-2436.
81.Wei, Y.; Jang, G.-W.; Hsueh, K. F.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J., Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322.
82.Li, X.; Li, X.; Dai, N.; Wang, G., Large-Area Fibrous Network of Polyaniline Formed on the Surface of Diatomite. Appl. Surf. Sci. 2009, 255, 8276-8280.
83.Chowdhury, A.-N.; Saleh, F. S.; Rahman, M. R.; Rahim, A., Influence of pH on the Specific Surface Area of Polyaniline Matrices. J. Appl. Polym. Sci. 2008, 109, 1764-1771.
84.Nand, A. V.; Ray, S.; Easteal, A. J.; Waterhouse, G. I. N.; Gizdavic-Nikolaidis, M.; Cooney, R. P.; Travas-Sejdic, J.; Kilmartin, P. A., Factors Affecting the Radical Scavenging Activity of Polyaniline. Synthetic Met. 2011, 161, 1232-1237.
85.Fusalba, F.; Gouérec, P.; Villers, D.; Bélanger, D., Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors. J. Electrochem. Soc. 2001, 148, A1-A6.
86.Tai, Z.; Yan, X.; Xue, Q., Three-Dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. J. Electrochem. Soc. 2012, 159, A1702-A1709.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊