|
1.http://www.cap-xx.com/resource/energy-storage-technologies/. 2.Becker, H. E., U.S. Patent 1957. 3.https://zh.wikipedia.org/wiki/%E7%94%B5%E5%AE%B9%E5%99%A8. 4.http://tikalon.com/blog/blog.php?article=2012/flow_battery. 5.Tan, Y. B.; Lee, J.-M., Graphene for Supercapacitor Applications. J. Mater. Chem. A 2013, 1, 14814-14843. 6.Pieta, P.; Obraztsov, I.; D''Souza, F.; Kutner, W., Composites of Conducting Polymers and Various Carbon Nanostructures for Electrochemical Supercapacitors. ECS J. Solid State Sci. Technol. 2013, 2, M3120-M3134. 7.Raymundo-Piñero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F., Relationship between the Nanoporous Texture of Activated Carbons and their Capacitance Properties in Different Electrolytes. Carbon 2006, 44, 2498-2507. 8.Shiraishi, S.; Kurihara, H.; Okabe, K.; Hulicova, D.; Oya, A., Electric Double Layer Capacitance of Highly Pure Single-Walled Carbon Nanotubes in Propylene Carbonate Electrolytes. Electrochem. Commun. 2002, 4, 593-598. 9.Nie, C.; Liu, D.; Pan, L.; Liu, Y.; Sun, Z.; Shen, J., Enhanced Capacitive Behavior of Carbon Aerogels/Reduced Graphene Oxide Composite Film for Supercapacitors. Solid State Ionics 2013, 247-248, 66-70. 10.Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828. 11.Halper, M. S.; Ellenbogen, J. C., Supercapacitors: A Brief Overview, MITRE Nanosystems Group, 2006. 12.Ryu, K. S.; Kim, K. M.; Park, N.-G.; Park, Y. J.; Chang, S. H., Symmetric Redox Supercapacitor with Conducting Polyaniline Electrodes. J. Power Sources 2002, 103, 305-309. 13.Clemente, A.; Panero, S.; Spila, E.; Scrosati, B., Solid-State, Polymer-Based, Redox Capacitors. Solid State Ionics 1996, 85, 273-277. 14.Arbizzani, C.; Mastragostino, M.; Soavib, F., New Trends in Electrochemical Supercapacitors. J. Power Sources 2001, 100, 164-170. 15.Wu, N.-L.; Kuo, S.-L.; Lee, M.-H., Preparation and Optimization of RuO2-Impregnated SnO2 Xerogel Supercapacitor. J. Power Sources 2002, 104, 62-65. 16.Sugimoto, W.; Shibutani, T.; Murakami, Y.; Takasu, Y., Charge Storage Capabilities of Rutile-Type RuO2-VO2 Solid Solution for Electrochemical Supercapacitors. Electrochem. Solid St. 2002, 5, A170-A172. 17.Snook, G. A.; Kao, P.; Best, A. S., Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196, 1-12. 18.Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H., Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783-810. 19.Lota, K.; Khomenko, V.; Frackowiak, E., Capacitance Properties of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotubes Composites. J. Phys. Chem. Solids 2004, 65, 295-301. 20.Snook, G. A.; Chen, G. Z., The Measurement of Specific Capacitances of Conducting Polymers Using the Quartz Crystal Microbalance. J. Electroanal. Chem. 2008, 612, 140-146. 21.Unverdorben, O., Ueber das Verhalten der organischen Körper in höheren Temperaturen. Annalen der Physik 1826, 84, 397-410. 22.Letheby, H., XXIX.- On the Production of a Blue Substance by the Electrolysis of Sulphate of Aniline. J. Chem. Soc. 1862, 15, 161-163. 23.Chiang, J. C.; MacDiarmid, A. G., ''Polyaniline'': Protonic Acid Doping of the Emeraldine Form to the Metallic Regime. Synthetic Met. 1986, 13, 193-205. 24.MacDiarmid, A. G., “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581-2590. 25.Gerard, M.; Chaubey, A.; Malhotra, B. D., Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345-359. 26.Stafström, S.; Brédas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiarmid, A. G., Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59, 1464-1467. 27.MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D., Polyaniline: Electrochemistry and Application to Rechargeable Batteries. Synthetic Met. 1987, 18, 393-398. 28.Mohilner, D. M.; Adams, R. N.; Argersinger, W. J., Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. J. Am. Chem. Soc. 1962, 84, 3618-3622. 29.Wei, Y.; Tang, X.; Sun, Y.; Focke, W. W., A Study of the Mechanism of Aniline Polymerization. J. Polym. Sci. Pol. Chem. 1989, 27, 2385-2396. 30.Wei, Y.; Hariharan, R.; Patel, S. A., Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-Substituted Anilines. Macromolecules 1990, 23, 758-764. 31.Sapurina, I.; Stejskal, J., The Mechanism of the Oxidative Polymerization of Aniline and the Formation of Supramolecular Polyaniline Structures. Polym. Int. 2008, 57, 1295-1325. 32.Stejskal, J.; Sapurina, I.; Trchová, M., Polyaniline Nanostructures and the Role of Aniline Oligomers in their Formation. Prog. Polym. Sci. 2010, 35, 1420-1481. 33.Sapurina, I.; Tenkovtsev, A. V.; Stejskal, J., Conjugated Polyaniline as a Result of the Benzidine Rearrangement. Polym. Int. 2015, 64, 453-465. 34.Geniès, E. M.; Lapkowski, M.; Penneau, J. F., Cyclic Voltammetry of Polyaniline: Interpretation of the Middle Peak. J. Electroanal. Chem. 1988, 249, 97-107. 35.Zhang, X.; Goux, W. J.; Manohar, S. K., Synthesis of Polyaniline Nanofibers by “Nanofiber Seeding”. J. Am. Chem. Soc. 2004, 126, 4502-4503. 36.Trchová, M.; Konyushenko, E. N.; Stejskal, J.; Kovářová, J.; Ćirić-Marjanović, G., The Conversion of Polyaniline Nanotubes to Nitrogen-Containing Carbon Nanotubes and their Comparison with Multi-Walled Carbon Nanotubes. Polym. Degrad. Stabil. 2009, 94, 929-938. 37.Cruz-Silva, R.; Ruiz-Flores, C.; Arizmendi, L.; Romero-García, J.; Arias-Marin, E.; Moggio, I.; Castillon, F. F.; Farias, M. H., Enzymatic Synthesis of Colloidal Polyaniline Particles. Polymer 2006, 47, 1563-1568. 38.Yano, J.; Sanada, K.; Patil, R.; Ooyama, Y.; Komaguchi, K.; Harima, Y., Poly(N-methylaniline) Microsphere Formation and Control of the Average Diameter by Simple Chemical Polymerization. Mater. Chem. Phys. 2007, 106, 279-285. 39.Can, M.; Uzun, S.; Pekmez, N. Ö., Chemical Polymerization of Aniline Using Periodic Acid in Acetonitrile. Synthetic Met. 2009, 159, 1486-1490. 40.Chen, W.-C.; Wen, T.-C.; Hu, C.-C.; Gopalan, A., Identification of Inductive Behavior for Polyaniline via Electrochemical Impedance Spectroscopy. Electrochim. Acta 2002, 47, 1305-1315. 41.Guo, Y.; Zhou, Y., Polyaniline Nanofibers Fabricated by Electrochemical Polymerization: A Mechanistic Study. Eur. Polym. J. 2007, 43, 2292-2297. 42.Wei, Y.; Jang, G.-W.; Chan, C.-C.; Hsueh, K. F.; Hariharan, R.; Patel, S. A.; Whitecar, C. K., Polymerization of Aniline and Alkyl Ring-Substituted Anilines in the Presence of Aromatlc Additives. J. Phys. Chem. 1990, 94, 7716-7721. 43.Zujovic, Z. D.; Wang, Y.; Bowmaker, G. A.; Kaner, R. B., Structure of Ultralong Polyaniline Nanofibers Using Initiators. Macromolecules 2011, 44, 2735-2742. 44.Tran, H. D.; Norris, I.; D’Arcy, J. M.; Tsang, H.; Wang, Y.; Mattes, B. R.; Kaner, R. B., Substituted Polyaniline Nanofibers Produced via Rapid Initiated Polymerization. Macromolecules 2008, 41, 7405-7410. 45.Andrade, E. M.; Molina, F. V.; Florit, M. I.; Posadas, D., Volume Changes of Poly(2-methylaniline) upon Redox Switching Anion and Relaxation Effects. Electrochem. Solid St. 2000, 3, 504-507. 46.Lizarraga, L.; Andrade, E. M. a.; Molina, F. V., Swelling and Volume Changes of Polyaniline upon Redox Switching. J. Electroanal. Chem. 2004, 561, 127-135. 47.Olad, A.; Gharekhani, H., Preparation and Electrochemical Investigation of the Polyaniline/Activated Carbon Nanocomposite for Supercapacitor Applications. Prog. Org. Coat. 2015, 81, 19-26. 48.Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H., Flexible Graphene–Polyaniline Composite Paper for High-Performance Supercapacitor. Energy Environ. Sci. 2013, 6, 1185-1191. 49.Wang, Y.-G.; Li, H.-Q.; Xia, Y.-Y., Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Adv. Mater. 2006, 18, 2619-2623. 50.Wang, X.; Deng, J.; Duan, X.; Liu, D.; Guo, J.; Liu, P., Crosslinked Polyaniline Nanorods with Improved Electrochemical Performance as Electrode Material for Supercapacitors. J. Mater. Chem. A 2014, 2, 12323-12329. 51.Yang, Y.; Chen, S.; Xu, L., Enhanced Conductivity of Polyaniline by Conjugated Crosslinking. Macromol. Rapid. Commun. 2011, 32, 593-597. 52.Smith, K. C. A.; Oatley, C. W., The Scanning Electron Microscope and Its Fields of Application. Brit. J. Appl. Phys. 1955, 6, 391-399. 53.Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K., Electron Microscopy Image Enhanced. Nature 1998, 392, 768-769. 54.Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309-319. 55.Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603-619. 56.Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373-380. 57.Vellacheri, R.; Al-Haddad, A.; Zhao, H.; Wang, W.; Wang, C.; Lei, Y., High Performance Supercapacitor for Efficient Energy Storage under Extreme Environmental Temperatures. Nano Energy 2014, 8, 231-237. 58.Stoller, M. D.; Ruoff, R. S., Best Practice Methods for Determining an Electrode Material''s Performance for Ultracapacitors. Energy Environ. Sci. 2010, 3, 1294-1301. 59.Rubinson, J. F.; Kayinamura, Y. P., Charge Transport in Conducting Polymers: Insights from Impedance Spectroscopy. Chem. Soc. Rev. 2009, 38, 3339-3347. 60.Randles, J. E. B., Kinetics of Rapid Electrode Reactions. Discuss. Faraday Soc. 1947, 1, 11-19. 61.Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977, 16, 578-580. 62.http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/. 63.Sun, X.; Zhou, Y.; Wu, W.; Liu, Y.; Tian, W.; Yu, G.; Qiu, W.; Chen, S.; Zhu, D., X-Shaped Oligothiophenes as a New Class of Electron Donors for Bulk-Heterojunction Solar Cells. J. Phys. Chem. B 2006, 110, 7702-7707. 64.Taerum, T.; Lukoyanova, O.; Wylie, R. G.; Perepichka, D. F., Synthesis, Polymerization, and Unusual Properties of New Star-Shaped Thiophene Oligomers. Org. Lett. 2009, 11, 3230-3233. 65.Lang, K. F.; Zander, M.; Theiling, E. A., Isotruxen. Chem. Ber. 1960, 93, 321-325. 66.Yang, J.-S.; Huang, H.-H.; Ho, J.-H., Electronic Properties of Star-Shaped Oligofluorenes Containing an Isotruxene Core: Interplay of Para and Ortho Conjugation Effects in Phenylene-Based π Systems. J. Phys. Chem. B 2008, 112, 8871-8878. 67.Yang, J.-S.; Lee, Y.-R.; Yan, J.-L.; Lu, M.-C., Synthesis and Properties of a Fluorene-Capped Isotruxene: A New Unsymmetrical Star-Shaped π-System. Org. Lett. 2006, 8, 5813-5816. 68.Yang, J.-S.; Huang, H.-H.; Lin, S.-H., Facile Multistep Synthesis of Isotruxene and Isotruxenone. J. Org. Chem. 2009, 74, 3974-3977. 69.Yang, J.-S.; Huang, H.-H.; Liu, Y.-H.; Peng, S.-M., Synthesis and Electronic Properties of Isotruxene-Derived Star-Shaped Ladder-Type Oligophenylenes: Bandgap Tuning with Two-Dimensional Conjugation. Org. Lett. 2009, 11, 4942-4945. 70.Lin, S.-H.; Hsu, Y.-C.; Lin, J. T.; Lin, C.-K.; Yang, J.-S., Isotruxene-Derived Cone-Shaped Organic Dyes for Dye-Sensitized Solar Cells. J. Org. Chem. 2010, 75, 7877-7886. 71.Liu, T.-A.; Prabhakar, C.; Yu, J.-Y.; Chen, C.-h.; Huang, H.-H.; Yang, J.-S., Star-Shaped Oligothiophenes Containing an Isotruxene Core: Synthesis, Electronic Properties, Electropolymerization, and Film Morphology. Macromolecules 2012, 45, 4529-4539. 72.Dehmlow, E. V.; Kelle, T., Synthesis of New Truxene Derivatives: Possible Precursors of Fullerene Partial Structures? Synthetic Commun. 1997, 27, 2021-2031. 73.Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M., Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures. J. Am. Chem. Soc. 2004, 126, 13695-13702. 74.Trchová, M.; Stejskal, J., Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803-1817. 75.Wang, X.; Liu, D.; Deng, J.; Duan, X.; Guo, J.; Liu, P., Improving Cyclic Stability of Polyaniline by Thermal Crosslinking as Electrode Material for Supercapacitors. RSC Adv. 2015, 5, 78545-78552. 76.Worakitsiri, P.; Pornsunthorntawee, O.; Thanpitcha, T.; Chavadej, S.; Weder, C.; Rujiravanit, R., Synthesis of Polyaniline Nanofibers and Nanotubes via Rhamnolipid Biosurfactant Templating. Synthetic Met. 2011, 161, 298-306. 77.Sinha, S.; Bhadra, S.; Khastgir, D., Effect of Dopant Type on the Properties of Polyaniline. J. Appl. Polym. Sci. 2009, 112, 3135-3140. 78.Fusalba, F.; Be´langer, D., Electropolymerization of Polypyrrole and Polyaniline-Polypyrrole from Organic Acidic Medium. J. Phys. Chem. B 1999, 103, 9044-9054. 79.Chan, H. S. O.; Ng, S. C.; Sim, W. S.; Tan, K. L.; Tan, B. T. G., Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-Doping by X-ray Photoelectron Spectroscopy. Macromolecules 1992, 25, 6029-6034. 80.Palaniappan, S.; Narayana, B. H., Temperature Effect on Conducting Polyaniline Salts: Thermal and Spectral Studies. J. Polym. Sci. Pol. Chem. 1994, 32, 2431-2436. 81.Wei, Y.; Jang, G.-W.; Hsueh, K. F.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J., Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. 82.Li, X.; Li, X.; Dai, N.; Wang, G., Large-Area Fibrous Network of Polyaniline Formed on the Surface of Diatomite. Appl. Surf. Sci. 2009, 255, 8276-8280. 83.Chowdhury, A.-N.; Saleh, F. S.; Rahman, M. R.; Rahim, A., Influence of pH on the Specific Surface Area of Polyaniline Matrices. J. Appl. Polym. Sci. 2008, 109, 1764-1771. 84.Nand, A. V.; Ray, S.; Easteal, A. J.; Waterhouse, G. I. N.; Gizdavic-Nikolaidis, M.; Cooney, R. P.; Travas-Sejdic, J.; Kilmartin, P. A., Factors Affecting the Radical Scavenging Activity of Polyaniline. Synthetic Met. 2011, 161, 1232-1237. 85.Fusalba, F.; Gouérec, P.; Villers, D.; Bélanger, D., Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors. J. Electrochem. Soc. 2001, 148, A1-A6. 86.Tai, Z.; Yan, X.; Xue, Q., Three-Dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. J. Electrochem. Soc. 2012, 159, A1702-A1709.
|