|
1.7參考資料 1.Diez I.; Ras R. H. A., Fluorescent silver nanoclusters. Nanoscale 2011, 3,1963-1970. 2. Barnes W. L.; Dereux A.; Ebbesen T.W., Surface plasmon subwavelength optics.Nature 2003, 424, 824-830. 3. (a) Shang L.; Dong S.; Nienhaus G. U., Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications. Nano Today 2011, 6, 401-418. (b) Shiang Y.-C.; Huang C.-C.; Chen W.-Y.; Chen P.-C.; Chang H.-T., Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 2012, 22, 12972-12982. 4. Khlebtsov N.; Dykman L., Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647-1671. 5.(a) Wang T.; Hu X.; Dong S., A Renewable SERS substrate prepared by cyclic depositing and stripping of silver shells on gold nanoparticle microtubes. Small 2008, 4, 781-786. (b) Wang C.-W.; Lin Z.-H.; Prathik R.; Chang H.-T., Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering. Front. Chem. 2013, 1, 1-5 6.Zheng J.; Nicovich P.R.; Dickson R.M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431. 7.(a) Schaeffer N.; Tan B.; Dickinson C.; Rosseinsky M.J.; Laromaine A.; McComb D.W., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun. 2008, 34, 3986-3988. (b)Lin C.-A.J.; Yang T.-Y.; Lee C.-H.; Huang S. H.; Sperling R. A.; Zanella M., Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401. (c) De Cremer G.; Coutiño-Gonzalez E.; Roeffaers M. B. J.; Moens B.; Ollevier J.; Van der Auweraer M., Characterization of fluorescence in heat-treated silver-exchanged zeolites. J. Am. Chem. Soc. 2009, 131, 3049-3056. (d)Adhikari B.; Banerjee A., Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg(II) sensing. Chem. Mater. 2010, 22, 4364-4371. (e) Zheng J.; Dickson R. M., Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc. 2002, 124, 13982-13983. 8.(a) Wei H.; Wang Z.; Yang L.; Tian S.; Hou C.; Lu Y., Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 2010, 135, 1406-1410. (b) Yu J.; Choi S.; Dickson R.M., Shuttle-based fluorogenic silver-cluster biolabels. Angew. Chem. Int. Ed. 2009, 121, 324-326. 9.Palmal S.; Jana N. R., Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 102-110. 10.Zheng J.; Petty J.T.; Dickson R.M., High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc 2003, 125, 7780-7781. 11.Bao Y.; Zhong C.; Vu D. M.; Temirov J. P.; Dyer R. B.; Martinez J. S.,Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J. Phys. Chem. C 2007, 111, 12194-12198. 12.Huang C.-C.; Yang Z.; Lee K.-H.; Chang H.-T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828. 13.Huang C.-C.; Liao H.-Y.; Shiang Y.-C.; Lin Z.-H.; Yang Z.; Chang H.-T., Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 2009, 19, 755-759. 14. Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J., From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670. 15.Lin H.; Li L.; Lei C.; Xu X.; Nie Z.; Guo M., Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 41, 256-261. 16.(a) Chen P.-C.; Chiang C.-K.; Chang H.-T., Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 2012, 15, 1-10. (b) Ho L.-C.; Wang C.-W.; Prathik R.; Chang H.-T., Sensitive and selective gold nanomaterials based optical probes. J. Chin. Chem. Soc. 2014, 61, 163-174. 17.(a) Chen P.-C.; Prathik R.; Chen L.-Y.; Chen Y.-N.; Chang H.-T., Gold nanomaterials based absorption and fluorescence detection of mercury, lead, and copper.Am. Chem. Soc. 2013, 1150, 39-62. (b) Xie J.; Zheng Y.; Ying J.Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889. 18.Lin Y.-H.; Tseng W.-L., Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal. Chem. 2010, 82, 9194-9200. 19.Pu K.-Y.; Luo Z.; Li K.; Xie J.; Liu B., Energy transfer between conjugated-oligoelectrolyte-substituted POSS and gold nanocluster for multicolor intracellular detection of mercury ion. J. Phys. Chem. C 2011, 115, 13069-13075. 20.Xie J.; Zheng Y.; Ying J.Y., Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions.Chem. Commun. 2010, 46, 961-963. 21.Liu J.-M.; Chen J.-T.; Yan X.-P., Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 2013, 85, 3238-3245. 22.Wang Y.; Chen J.-T.; Yan X.-P., Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 2013, 85, 2529-2535. 23.Xavier P. L.; Chaudhari K.; Verma P. K.; Pal S. K.; Pradeep T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769-2776. 24.Wen F.; Dong Y.; Feng L.; Wang S.; Zhang S.; Zhang X., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal.Chem. 2011, 83, 1193-1196. 25.Chen Y.; Wang Y.; Wang C.; Li W.; Zhou H.; Jiao H., Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. J. Colloid Interface Sci. 2013, 396, 63-68. 26.Shang L.; Dong S., Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template.1088-1090. 27.Palmal S.; Basiruddin S. K.; Maity A. R.; Ray S. C.; Jana N. R., Thiol-directed synthesis of highly fluorescent gold clusters and their conversion into stable imaging nanoprobes. Chem. Eur. J. 2013, 19, 943-949. 28.Lin S.-Y.; Chen N.-T.; Sum S.-P.; Lo L.-W.; Yang C.-S., Ligand exchanged photoluminescentgold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem. Commun. 2008, 39, 4762-4764. 29.Wang Y.; Chen J.; Irudayaraj J., Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 2011, 5, 9718-9725. 30.Liu C.-L.; Wu H.-T.; Hsiao Y.-H.;, Lai C.-W.; Shih C.-W.; Peng Y.-K., Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. 2011, 50, 7056-7060. 31.Kong Y.; Chen J.; Gao F.; Brydson R.; Johnson B.; Heath G., Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation,characterization, cancer targeting and imaging. Nanoscale 2013, 5, 1009-1017. 32.Wang J.; Zhang G.; Li Q.; Jiang H.; Liu C.; Amatore C., In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci. Rep.2013, 3,1-5 2.6參考資料 1.(a) Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858-871; (b) Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431. 2.(a) Sun, J.; Jin, Y., Fluorescent Au nanoclusters: recent progress and sensing applications. J. Mater. Chem. C 2014, 2, 8000-8011; (b) Wu, Z.; Jin, R., On the ligand''s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573. 3.(a) Chen, P. C.; Chiang, C. K.; Chang, H. T., Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 2012, 15, 1-10; (b) Wang, C.-W.; Chen, Y.-N.; Wu, B.-Y.; Lee, C.-K.; Chen, Y.-C.; Huang, Y.-H.; Chang, H.-T., Sensitive detection of canide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 2015, 408, 287-294. 4.Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 119, 6948-6952. 5.Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270. 6.Chen, Y.; Li, W.; Wang, Y.; Yang, X.; Chen, J.; Jiang, Y.; Yu, C.; Lin, Q.,Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J. Mater. Chem. C 2014, 2, 4080-4085. 7.Shang, L.; Yang, L.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U., Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4, 4155-4160. 8.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889. 9.Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769-2776. 10.Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 2010, 135,1406-1410. 11.Li, W.; Gao, Z.; Su, R.; Qi, W.; Wang, L.; He, Z., Scissor-based fluorescent detection of pepsin using lysozyme-stabilized Au nanoclusters. Anal. Methods 2014, 6, 6789-6795. 12.Chen, Y. N.; Chen, P. C.; Wang, C. W.; Lin, Y. S.; Ou, C.-M.; Ho, L.-C.; Chang, H.-T., One-pot synthesis of fluorescent BSA-Ce/Au nanoclusters as ratiometric pH probes. Chem. Commun. 2014, 50, 8571-8574. 13.(a) Schafer, F. Q.; Buettner, G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 2001, 30, 1191-1212; (b) Jovanovic, S. V.; Harriman, A.;Simic, M. G., Electron-transfer reactions of tryptophan and tyrosine derivatives. J. Phys. Chem. 1986, 90, 1935-1939; (c) Millis, K. K.; Weaver, K. H.; Rabenstein, D. L., Oxidation/reduction potential of glutathione. J. Org. Chem. 1993, 58, 4144-4146. 14.Zhao, Y.; Zhou, F.; Zhou, H.; Su, H., The structural and bonding evolution in cysteine-gold cluster complexes. Phys. Chem. Chem. Phys. 2013, 15, 1690-1698. 15.Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217. 16.Martel, P.; Kim, S.; Powell, B., Physical characteristics of human transferrin from small angle neutron scattering. Biophys. J. 1980, 31, 371-380. 17.Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6, 1515-1524. 18.Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6, 1515-1524. 19.Kilár, F.; Simon, I., The effect of iron binding on the conformation of transferrin. A small angle x-ray scattering study. Biophys. J . 1985, 48, 799-802. 20.Walker, R., Nitrates, nitrites and N-nitroso compounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam. 1990, 7, 717-768. 21.Kyrtopoulos, S. A., N-nitroso compound formation in human gastric juice. Cancer Surv. 1989, 8, 423-442. 22.Chen, W. Y.; Huang, C. C.; Chen, L. Y.; Chang, H. T., Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite.Nanoscale 2014, 6, 11078-11083. 23.Ozawa, S.; Sakamoto, E.; Ichikawa, T.; Watanabe, Y.; Morishima, I., Model studies of nitrosyl intermediates in the catalytic cycle of dissimilatory nitrite reductases. Inorg. Chem. 1995, 34, 6362-6370. 24.Wang, Y.; Laborda, E.; Compton, R. G., Electrochemical oxidation of nitrite: kinetic, mechanistic and analytical study by square wave voltammetry. J. Electroanal. Chem. 2012, 670, 56-61. 25.Zhou, C.; Sun, C.; Yu, M.; Qin, Y.; Wang, J.; Kim, M.; Zheng, J., Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010, 114, 7727-7732. 26.Mensinga, T. T.; Speijers, G. J.; Meulenbelt, J., Health implications of exposure to environmental nitrogenous compounds. Toxicol. Rev. 2003, 22, 41-51. 27.Liu, X.; Guo, L.; Cheng, L.; Ju, H., Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. Talanta 2009, 78, 691-694. 28.Zhang, M.; Cheng, F.; Gan, F., Electrochemical nitrite nanosensor based on Au nanoparticles: graphene nanocomposites. Int. J. Electrochem. Sci. 2015, 10, 5905-5913. 29.Dong, S.; Guan, W.; Lu, C., Quantum dots in organo-modified layered double hydroxide framework-improved peroxynitrous acid chemiluminescence for nitrite sensing. Sens. Actuators. B Chem. 2013, 188, 597-602. 30.Miao, P.; Shen, M.; Ning, L.; Chen, G.; Yin, Y., Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Anal. Bioanal. Chem. 2011, 399, 2407-2411. 31.Wang, L.; Li, B.; Zhang, L.; Zhang, L.; Zhao, H., Fabrication and characterization of a fluorescent sensor based on Rh 6G-functionlized silica nanoparticles for nitrite ion detection. Sens. Actuators. B Chem. 2012, 171-172, 946-953.
|