跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳柏宜
研究生(外文):Bo-Yi Wu
論文名稱:利用榖胱甘肽輔助蛋白質金奈米團簇之合成
論文名稱(外文):Glutathione assisted preparation of gold nanoclusters using minimum amount of protein
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
口試委員:吳秀梅陳明娟胡焯淳陳建甫
口試委員(外文):Shou-Mei WuMin-Jane ChenCho-Chun HuChien-Fu Chen
口試日期:2016-06-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:52
中文關鍵詞:金奈米團簇光致發光牛血清蛋白穀胱甘肽亞硝酸鹽
外文關鍵詞:Au nanoclustersPhotoluminescenceBSAGSHNitrite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:555
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由使用穀胱甘肽和牛血清白蛋白以合成具有光致發光性質之金奈米團簇(BSA/GSH-Au NCs)。其激發波長與放光波長分別為330 nm與650 nm。在BSA/GSH-Au NCs的製備中,BSA與GSH分別為包覆劑和還原劑。藉由加入穀胱甘肽,只需30 μM BSA即可製備出穩定且具有較強的光致發光性質的BSA/GSH-Au NCs。此方法除了只需30分鐘外,同時可節省昂貴蛋白質試劑的用量。另外,我們同時也成功的將此方法搭配不同蛋白質,如Lysozyme、Ovalbumin、Transferrin,製備出不同的protein/GSH-Au NCs。其光致發光的強度隨著蛋白質所含酪氨酸/半胱氨酸(tyrosine/cysteine)的數目與大小的增加而上升。我們同時也將此材料應用於亞硝酸鹽濃度之偵測。在酸性條件(pH = 3)下,由於NO+為缺電子,會和BSA/GSH-Au NCs作用並氧化BSA/GSH-Au NCs中的金,造成其光致發光強度下降。在最佳化的條件下,此系統之偵測極限為0.3 μM,且具有好的選擇性、高靈敏度及極佳的耐鹽性(在500 mM NaCl溶液中仍有光致發光之特性)。我們也將此系統成功應用於湖水樣品中亞硝酸鹽濃度之偵測,證明此系統於真實樣品中亞硝酸鹽濃度偵測之可行性。

Bovine serum albumin (BSA) and glutathione (GSH) have been used to prepare gold nanoclusters (BSA/GSH-Au NCs) with excitation/emission wavelengths of 330/650 nm from Au3+ at 70 °C for 30 min. The major roles of BSA and GSH in the preparation of BSA/GSH-Au NCs are acting as capping and reducing agents, respectively. With the assistance of GSH, only 30 μM BSA is required to prepare stable and bright BSA/GSH-Au NCs, leading to low cost and ease in configuration of BSA/GSH-Au NCs. In addition to BSA, lysozyme, ovalbumin, and transferrin have also been used to prepare protein/GSH-Au NCs. The decreased order of the photoluminescence intensity of protein/GSH-Au NCs agrees with the decreased orders of size and number of tyrosine/cysteine of the proteins. The photoluminescence of BSA/GSH-Au NCs is quenched by nitrite (NO2-) at pH 3.0, mainly due to the oxidation of BSA/GSH-Au NCs with nitrosyl ions (NO+). This approach allows detection of NO2ˉ down to 0.3 μM, with great selectivity and stability against salt (up to 500 mM NaCl). Practicality of this simple and sensitive approach has been validated by the analysis of pond water samples.

目錄
誌謝 i
中文摘要 iv
英文摘要 v
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 貴金屬奈米材料 1
1.2 貴金屬奈米團簇 2
1.3 金奈米團簇之合成 3
1.3.1 樹枝狀高分子及聚合物穩定之金奈米團簇 4
1.3.2 硫醇穩定之金奈米團簇 4
1.3.3 蛋白質為模版之金奈米團簇 5
1.4 金奈米團簇之應用 6
1.4.1 金奈米團簇感測器 6
1.4.2 金奈米團簇應用於生物顯影 7
1.5 研究動機 8
1.6 圖表 9
1.7 參考資料 14
第二章 利用穀胱甘肽輔助蛋白質金奈米團簇之合成及其與亞硝酸鹽偵測之應用
19
2.1 前言 19
2.2 材料與方法 21
2.2.1 藥品 21
2.2.2 BSA-Au NCs的合成 21
2.2.3 GSH-Au NCs的合成 21
2.2.4 BSA/GSH-Au NCs的合成 22
2.2.5 材料鑑定 22
2.2.6 利用BSA/GSH-Au NCs檢測亞硝酸鹽 23
2.2.7 偵測湖水中的亞硝酸鹽 23
2.3 結果與討論 24
2.3.1 BSA, GSH, Au3+的濃度探討 24
2.3.2 BSA/GSH-Au NCs性質鑑定 27
2.3.3 BSA/GSH-Au NCs形成機制 28
2.3.4 利用BSA/GSH-Au NCs 偵測亞硝酸鹽 30
2.4 結論 34
2.5 圖表 35
2.6 參考資料 48



1.7參考資料
1.Diez I.; Ras R. H. A., Fluorescent silver nanoclusters. Nanoscale 2011, 3,1963-1970.
2. Barnes W. L.; Dereux A.; Ebbesen T.W., Surface plasmon subwavelength optics.Nature 2003, 424, 824-830.
3. (a) Shang L.; Dong S.; Nienhaus G. U., Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications. Nano Today 2011, 6, 401-418. (b) Shiang Y.-C.; Huang C.-C.; Chen W.-Y.; Chen P.-C.; Chang H.-T., Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 2012, 22, 12972-12982.
4. Khlebtsov N.; Dykman L., Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647-1671.
5.(a) Wang T.; Hu X.; Dong S., A Renewable SERS substrate prepared by cyclic depositing and stripping of silver shells on gold nanoparticle microtubes. Small 2008, 4, 781-786. (b) Wang C.-W.; Lin Z.-H.; Prathik R.; Chang H.-T., Detection of mercury ions using silver telluride nanoparticles as a substrate and
recognition element through surface-enhanced Raman scattering. Front. Chem. 2013, 1, 1-5
6.Zheng J.; Nicovich P.R.; Dickson R.M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
7.(a) Schaeffer N.; Tan B.; Dickinson C.; Rosseinsky M.J.; Laromaine A.; McComb D.W., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun. 2008, 34, 3986-3988. (b)Lin C.-A.J.; Yang T.-Y.; Lee C.-H.; Huang S. H.;
Sperling R. A.; Zanella M., Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401. (c) De Cremer G.; Coutiño-Gonzalez E.; Roeffaers M. B. J.; Moens B.; Ollevier J.; Van der Auweraer M., Characterization of fluorescence in heat-treated silver-exchanged zeolites. J. Am. Chem. Soc. 2009, 131, 3049-3056. (d)Adhikari B.; Banerjee A., Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg(II) sensing. Chem. Mater. 2010, 22, 4364-4371. (e) Zheng J.; Dickson R. M., Individual water-soluble dendrimer-encapsulated silver nanodot
fluorescence. J. Am. Chem. Soc. 2002, 124, 13982-13983.
8.(a) Wei H.; Wang Z.; Yang L.; Tian S.; Hou C.; Lu Y., Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 2010, 135, 1406-1410. (b) Yu J.; Choi S.; Dickson R.M., Shuttle-based fluorogenic silver-cluster biolabels. Angew. Chem. Int. Ed. 2009, 121, 324-326.
9.Palmal S.; Jana N. R., Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 102-110.
10.Zheng J.; Petty J.T.; Dickson R.M., High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc 2003, 125, 7780-7781.
11.Bao Y.; Zhong C.; Vu D. M.; Temirov J. P.; Dyer R. B.; Martinez J. S.,Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J. Phys. Chem. C 2007, 111, 12194-12198.
12.Huang C.-C.; Yang Z.; Lee K.-H.; Chang H.-T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
13.Huang C.-C.; Liao H.-Y.; Shiang Y.-C.; Lin Z.-H.; Yang Z.; Chang H.-T., Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 2009, 19, 755-759.
14. Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J., From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
15.Lin H.; Li L.; Lei C.; Xu X.; Nie Z.; Guo M., Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 41, 256-261.
16.(a) Chen P.-C.; Chiang C.-K.; Chang H.-T., Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 2012, 15, 1-10. (b) Ho L.-C.; Wang C.-W.; Prathik R.; Chang H.-T., Sensitive and selective gold nanomaterials based optical probes. J. Chin. Chem. Soc. 2014, 61, 163-174.
17.(a) Chen P.-C.; Prathik R.; Chen L.-Y.; Chen Y.-N.; Chang H.-T., Gold nanomaterials based absorption and fluorescence detection of mercury, lead, and copper.Am. Chem. Soc. 2013, 1150, 39-62. (b) Xie J.; Zheng Y.; Ying J.Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
18.Lin Y.-H.; Tseng W.-L., Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal. Chem. 2010, 82, 9194-9200.
19.Pu K.-Y.; Luo Z.; Li K.; Xie J.; Liu B., Energy transfer between
conjugated-oligoelectrolyte-substituted POSS and gold nanocluster for multicolor intracellular detection of mercury ion. J. Phys. Chem. C 2011, 115, 13069-13075.
20.Xie J.; Zheng Y.; Ying J.Y., Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions.Chem. Commun. 2010, 46, 961-963.
21.Liu J.-M.; Chen J.-T.; Yan X.-P., Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 2013, 85, 3238-3245.
22.Wang Y.; Chen J.-T.; Yan X.-P., Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 2013, 85, 2529-2535.
23.Xavier P. L.; Chaudhari K.; Verma P. K.; Pal S. K.; Pradeep T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769-2776.
24.Wen F.; Dong Y.; Feng L.; Wang S.; Zhang S.; Zhang X., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal.Chem. 2011, 83, 1193-1196.
25.Chen Y.; Wang Y.; Wang C.; Li W.; Zhou H.; Jiao H., Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. J. Colloid Interface Sci. 2013, 396, 63-68.
26.Shang L.; Dong S., Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template.1088-1090.
27.Palmal S.; Basiruddin S. K.; Maity A. R.; Ray S. C.; Jana N. R., Thiol-directed synthesis of highly fluorescent gold clusters and their conversion into stable imaging nanoprobes. Chem. Eur. J. 2013, 19, 943-949.
28.Lin S.-Y.; Chen N.-T.; Sum S.-P.; Lo L.-W.; Yang C.-S., Ligand exchanged photoluminescentgold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem. Commun. 2008, 39, 4762-4764.
29.Wang Y.; Chen J.; Irudayaraj J., Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 2011, 5, 9718-9725.
30.Liu C.-L.; Wu H.-T.; Hsiao Y.-H.;, Lai C.-W.; Shih C.-W.; Peng Y.-K., Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. 2011, 50, 7056-7060.
31.Kong Y.; Chen J.; Gao F.; Brydson R.; Johnson B.; Heath G., Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation,characterization, cancer targeting and imaging. Nanoscale 2013, 5, 1009-1017.
32.Wang J.; Zhang G.; Li Q.; Jiang H.; Liu C.; Amatore C., In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci. Rep.2013, 3,1-5
2.6參考資料
1.(a) Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858-871; (b) Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
2.(a) Sun, J.; Jin, Y., Fluorescent Au nanoclusters: recent progress and sensing applications. J. Mater. Chem. C 2014, 2, 8000-8011; (b) Wu, Z.; Jin, R., On the ligand''s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573.
3.(a) Chen, P. C.; Chiang, C. K.; Chang, H. T., Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 2012, 15, 1-10; (b) Wang, C.-W.; Chen, Y.-N.; Wu, B.-Y.; Lee, C.-K.; Chen, Y.-C.; Huang, Y.-H.; Chang, H.-T., Sensitive detection of canide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 2015, 408, 287-294.
4.Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 119, 6948-6952.
5.Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-protected gold clusters revisited:  bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
6.Chen, Y.; Li, W.; Wang, Y.; Yang, X.; Chen, J.; Jiang, Y.; Yu, C.; Lin, Q.,Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J. Mater. Chem. C 2014, 2, 4080-4085.
7.Shang, L.; Yang, L.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U., Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4, 4155-4160.
8.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
9.Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769-2776.
10.Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 2010, 135,1406-1410.
11.Li, W.; Gao, Z.; Su, R.; Qi, W.; Wang, L.; He, Z., Scissor-based fluorescent detection of pepsin using lysozyme-stabilized Au nanoclusters. Anal. Methods 2014, 6, 6789-6795.
12.Chen, Y. N.; Chen, P. C.; Wang, C. W.; Lin, Y. S.; Ou, C.-M.; Ho, L.-C.; Chang, H.-T., One-pot synthesis of fluorescent BSA-Ce/Au nanoclusters as ratiometric pH probes. Chem. Commun. 2014, 50, 8571-8574.
13.(a) Schafer, F. Q.; Buettner, G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 2001, 30, 1191-1212; (b) Jovanovic, S. V.; Harriman, A.;Simic, M. G., Electron-transfer reactions of tryptophan and tyrosine derivatives.
J. Phys. Chem. 1986, 90, 1935-1939; (c) Millis, K. K.; Weaver, K. H.; Rabenstein, D. L., Oxidation/reduction potential of glutathione. J. Org. Chem. 1993, 58, 4144-4146.
14.Zhao, Y.; Zhou, F.; Zhou, H.; Su, H., The structural and bonding evolution in cysteine-gold cluster complexes. Phys. Chem. Chem. Phys. 2013, 15, 1690-1698.
15.Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.
16.Martel, P.; Kim, S.; Powell, B., Physical characteristics of human transferrin from small angle neutron scattering. Biophys. J. 1980, 31, 371-380.
17.Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6, 1515-1524.
18.Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6, 1515-1524.
19.Kilár, F.; Simon, I., The effect of iron binding on the conformation of transferrin. A small angle x-ray scattering study. Biophys. J . 1985, 48, 799-802.
20.Walker, R., Nitrates, nitrites and N-nitroso compounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam. 1990, 7, 717-768.
21.Kyrtopoulos, S. A., N-nitroso compound formation in human gastric juice. Cancer Surv. 1989, 8, 423-442.
22.Chen, W. Y.; Huang, C. C.; Chen, L. Y.; Chang, H. T., Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite.Nanoscale 2014, 6, 11078-11083.
23.Ozawa, S.; Sakamoto, E.; Ichikawa, T.; Watanabe, Y.; Morishima, I., Model studies of nitrosyl intermediates in the catalytic cycle of dissimilatory nitrite reductases. Inorg. Chem. 1995, 34, 6362-6370.
24.Wang, Y.; Laborda, E.; Compton, R. G., Electrochemical oxidation of nitrite: kinetic, mechanistic and analytical study by square wave voltammetry. J. Electroanal. Chem. 2012, 670, 56-61.
25.Zhou, C.; Sun, C.; Yu, M.; Qin, Y.; Wang, J.; Kim, M.; Zheng, J., Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010, 114, 7727-7732.
26.Mensinga, T. T.; Speijers, G. J.; Meulenbelt, J., Health implications of exposure to environmental nitrogenous compounds. Toxicol. Rev. 2003, 22, 41-51.
27.Liu, X.; Guo, L.; Cheng, L.; Ju, H., Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. Talanta 2009,
78, 691-694.
28.Zhang, M.; Cheng, F.; Gan, F., Electrochemical nitrite nanosensor based on Au nanoparticles: graphene nanocomposites. Int. J. Electrochem. Sci. 2015, 10, 5905-5913.
29.Dong, S.; Guan, W.; Lu, C., Quantum dots in organo-modified layered double hydroxide framework-improved peroxynitrous acid chemiluminescence for nitrite sensing. Sens. Actuators. B Chem. 2013, 188, 597-602.
30.Miao, P.; Shen, M.; Ning, L.; Chen, G.; Yin, Y., Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Anal. Bioanal. Chem. 2011, 399, 2407-2411.
31.Wang, L.; Li, B.; Zhang, L.; Zhang, L.; Zhao, H., Fabrication and characterization of a fluorescent sensor based on Rh 6G-functionlized silica nanoparticles for nitrite ion detection. Sens. Actuators. B Chem. 2012, 171-172, 946-953.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top