|
1.https://en.wikipedia.org/wiki/Electromagnetic_radiation. 2.https://www.uni-leipzig.de/~pwm/web/?section=introduction&page=fluorescence. 3.Khan, Md. R. R.; Khalilian, A.; Kang, S.-W., Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane. Sensors 2016,16, 265. 4.Waldeck, D. H., Photoisomerization dynamics of stilbenes. Chem. Rev. 1991,91, 415-436. 5.Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S., The Photochemistry of trans-ortho-, -meta-, and -para-Aminostilbenes. J. Am. Chem. Soc. 1999,121, 12045-12053. 6.Shimomura, O.; Johnson, F. H.; Saiga, Y., Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. J. Cell. Physio. 1962,59, 223-239. 7.http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2008/illpres.html. 8.Cubitt, A. B.; Heim, R.; Adams, S. R.; Boyd, A. E.; Gross, L. A.; Tsien, R. Y., Understanding, improving and using green fluorescent proteins. Trends Biochem.Sci. 1995,20, 448-455. 9.Ward, W. W.; Cody, C. W.; Hart, R. C.; Cormier, M. J., Spectrophotometric Identity of the Energy Tranafer Chromophores in Renilla and Aequorea Green-Fluorescent Proteins. Photochem. Photobiol. 1980,31, 611-615. 10.Meech, S. R., Excited state reactions in fluorescent proteins. Chemical Society Reviews 2009,38, 2922-2934. 11.Brejc, K.; Sixma, T. K.; Kitts, P. A.; Kain, S. R.; Tsien, R. Y.; Ormö, M.; Remington, S. J., Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Natl. Acad. Sci. USA 1997,94, 2306-2311. 12.Wu, L.; Burgess, K., Syntheses of Highly Fluorescent GFP-Chromophore Analogues. J. Am. Chem. Soc. 2008,130, 4089-4096. 13.Baldridge, A.; Solntsev, K. M.; Song, C.; Tanioka, T.; Kowalik, J.; Hardcastle, K.; Tolbert, L. M., Inhibition of twisting of a green fluorescent protein-like chromophore by metal complexation. Chem. Commun. 2010,46, 5686-5688. 14.Chen, K.-Y.; Cheng, Y.-M.; Lai, C.-H.; Hsu, C.-C.; Ho, M.-L.; Lee, G.-H.; Chou, P.-T., Ortho Green Fluorescence Protein Synthetic Chromophore; Excited-State Intramolecular Proton Transfer via a Seven-Membered-Ring Hydrogen-Bonding System. J. Am. Chem. Soc. 2007,129, 4534-4535. 15.Hsu, Y.-H.; Chen, Y.-A.; Tseng, H.-W.; Zhang, Z.; Shen, J.-Y.; Chuang, W.-T.; Lin, T.-C.; Lee, C.-S.; Hung, W.-Y.; Hong, B.-C.; Liu, S.-H.; Chou, P.-T., Locked ortho- and para-Core Chromophores of Green Fluorescent Protein; Dramatic Emission Enhancement via Structural Constraint. J. Am. Chem. Soc. 2014,136, 11805-11812. 16.Baldridge, A.; Feng, S.; Chang, Y.-T.; Tolbert, L. M., Recapture of GFP Chromophore Fluorescence in a Protein Host. ACS Comb. Sci. 2011,13, 214-217. 17.Cacciarini, M.; Nielsen, M. B.; de Castro, E. M.; Marinescu, L.; Bols, M., β-Cyclodextrin as a mimetic of the natural GFP-chromophore environment. Tetrahedron Lett. 2012,53, 973-976. 18.Fery-Forgues, S.; Veesler, S.; Fellows, W. B.; Tolbert, L. M.; Solntsev, K. M., Microcrystals with Enhanced Emission Prepared from Hydrophobic Analogues of the Green Fluorescent Protein Chromophore via Reprecipitation. Langmuir 2013,29, 14718-14727. 19.Lee, J.-S.; Baldridge, A.; Feng, S.; SiQiang, Y.; Kim, Y. K.; Tolbert, L. M.; Chang, Y.-T., Fluorescence Response Profiling for Small Molecule Sensors Utilizing the Green Fluorescent Protein Chromophore and Its Derivatives. ACS Comb. Sci. 2011,13, 32-38. 20.Yang, J.-S.; Huang, G.-J.; Liu, Y.-H.; Peng, S.-M., Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem. Commun. 2008, 1344-1346. 21.Huang, G.-J.; Ho, J.-H.; Prabhakar, C.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S., Site-Selective Hydrogen-Bonding-Induced Fluorescence Quenching of Highly Solvatofluorochromic GFP-like Chromophores. Org. Lett. 2012,14, 5034-5037. 22.Cheng, C.-W.; Huang, G.-J.; Hsu, H.-Y.; Prabhakar, C.; Lee, Y.-P.; Diau, E. W.-G.; Yang, J.-S., Effects of Hydrogen Bonding on Internal Conversion of GFP-like Chromophores. II. The meta-Amino Systems. J. Phys. Chem. B 2013,117, 2705-2716. 23.Tou, S.-L.; Huang, G.-J.; Chen, P.-C.; Chang, H.-T.; Tsai, J.-Y.; Yang, J.-S., Aggregation-induced emission of GFP-like chromophores via exclusion of solvent-solute hydrogen bonding. Chem. Commun. 2014,50, 620-622. 24.(a) Ikejiri, M.; Tsuchino, M.; Chihara, Y.; Yamaguchi, T.; Imanishi, T.; Obika, S.; Miyashita, K., Design and Concise Synthesis of a Novel Type of Green Fluorescent Protein Chromophore Analogue. Org. Lett. 2012,14, 4406-4409; (b) Liu, X.-Y.; Shi, L.; Ding, Z.; Long, Y.-T., New insight into the application of GFP chromophore inspired derivatives: a F−fluorescent chemodosimeter. RSC Adv. 2014,4, 53557-53560; (c) Shi, L.; Li, Y.; Liu, Z.-P.; James, T. D.; Long, Y.-T., Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore. Talanta 2012,100, 401-404; (d) Wagenknecht, H.-A.; Wenge, U., Synthetic GFP Chromophore and Control of Excited-State Proton Transfer in DNA: An Alternative Concept for Fluorescent DNA Labels with Large Apparent Stokes'' Shifts. Synthesis 2011, 502-508. 25.Baranov, M. S.; Solntsev, K. M.; Baleeva, N. S.; Mishin, A. S.; Lukyanov, S. A.; Lukyanov, K. A.; Yampolsky, I. V., Red-shifted fluorescent aminated derivatives of a conformationally locked GFP chromophore. Chem. Eur. J. 2014,20, 13234-41. 26.Gutierrez, S.; Martinez-Lopez, D.; Moron, M.; Sucunza, D.; Sampedro, D.; Domingo, A.; Salgado, A.; Vaquero, J. J., Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring. Chem. Eur. J. 2015,21, 18758-63. 27.http://zeiss-campus.magnet.fsu.edu/articles/spectralimaging/introduction.html. 28.Chuang, W. T.; Hsieh, C. C.; Lai, C. H.; Lai, C. H.; Shih, C. W.; Chen, K. Y.; Hung, W. Y.; Hsu, Y. H.; Chou, P. T., Excited-state intramolecular proton transfer molecules bearing o-hydroxy analogues of green fluorescent protein chromophore. J. Org. Chem. 2011,76, 8189-202. 29.http://zeiss-campus.magnet.fsu.edu/articles/probes/anthozoafps.html. 30.Bevis, B. J.; Glick, B. S., Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 2002,20, 83-87. 31.Mizuno, H.; Mal, T. K.; Tong, K. I.; Ando, R.; Furuta, T.; Ikura, M.; Miyawaki, A., Photo-Induced Peptide Cleavage in the Green-to-Red Conversion of a Fluorescent Protein. Molecular Cell 2003,12, 1051-1058. 32.Ando, R.; Hama, H.; Yamamoto-Hino, M.; Mizuno, H.; Miyawaki, A., An Optical Marker Based on the UV-induced Green-to-Red Photoconversion of a Fluorescent Protein. PNAS 2002,99, 12651-12656. 33.He, X.; Bell, A. F.; Tonge, P. J., Synthesis and Spectroscopic Studies of Model Red Fluorescent Protein Chromophores. Org. Lett. 2002,4, 1523-1526. 34.Yampolsky, I. V.; Kislukhin, A. A.; Amatov, T. T.; Shcherbo, D.; Potapov, V. K.; Lukyanov, S.; Lukyanov, K. A., Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs. Bioorganic Chemistry 2008,36, 96-104. 35.Mishin, A. S.; Belousov, V. V.; Solntsev, K. M.; Lukyanov, K. A., Novel uses of fluorescent proteins. Curr. Opin. Chem. Biol. 2015,27, 1-9. 36.Gu, X.; Yao, J.; Zhang, G.; Zhang, C.; Yan, Y.; Zhao, Y.; Zhang, D., New electron-donor/acceptor-substituted tetraphenylethylenes: aggregation-induced emission with tunable emission color and optical-waveguide behavior. Chem. Asian J. 2013,8, 2362-9. 37.Chatterjee, T.; Roy, D.; Das, A.; Ghosh, A.; Bag, P. P.; Mandal, P. K., Chemical tweaking of a non-fluorescent GFP chromophore to a highly fluorescent coumarinic fluorophore: application towards photo-uncaging and stem cell imaging. RSC Adv. 2013,3, 24021. 38.Ivashkin, P. E.; Yampolsky, I. V.; Lukyanov, K. A., Synthesis and properties of chromophores of fluorescent proteins. uss. J. Bioorg. Chem. 2009,35, 652-669. 39.Kojima, S.; Ohkawa, H.; Hirano, T.; Maki, S.; Niwa, H.; Ohashi, M.; Inouye, S.; Tsuji, F. I., Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GEP). Tetrahedron Lett. 1998,39, 5239-5242. 40.(a) Clark, T. B.; Orr, M. E.; Flynn, D. C.; Goodson, T., Synthesis and Optical Properties of Two-Photon Absorbing GFP-type Probes. J. Phys. Chem. C 2011,115, 7331-7338; (b) Kowalik, J.; Baldridge, A.; Tolbert, L. M., Efficient Synthesis of New 4-Arylideneimidazolin-5-ones Related to the GFP Chromophore by 2+3 Cyclocondensation of Arylideneimines with Imidate Ylides. Synthesis 2010, (No. 14), 2424-2436; (c) Lerestif, J. M.; Bazureau, J. P.; Hamelin, J., Cycloaddition with stabilized imidates as potential azomethines ylides : A new route to 2-imidazoline and 4-yliden-s-imidazolinone. Tetrahedron Lett. 1993,34, 4639-4642. 41.Schneider, E. M.; Zeltner, M.; Kranzlin, N.; Grass, R. N.; Stark, W. J., Base-free Knoevenagel condensation catalyzed by copper metal surfaces. Chem. Commun. 2015,51, 10695-10698. 42.Chatterjee, T.; Mandal, M.; Das, A.; Bhattacharyya, K.; Datta, A.; Mandal, P. K., Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands. J. Phys. Chem. B 2016,120, 3503-3510. 43.Walsh, J. J.; Shah, R.; McCormack, E. M.; Hudson, G. J. W., Martina ; Stack, G. D.; Moran, B. W.; Coogan, A.; Breen, E. C., Patent: US2015/18566 A1. 2015. 44.Uehling, D. E.; Hubbard, R. D.; Waterson, A. G.; Petrov, K.; Bifulco, J., Neil ; Wilson, J. W.; Badiang, J. G.; Cheung, M.; Yamabe, M., Patent: US2009/149456 A1. 2009. 45.Burns, J.; McCombie, H.; Scarborough, H. A., Some substitution products of azobenzene. Burns, J. Chem. Soc.1928, 2928-2936. 46.Nettekoven, M.; Plancher, J.-M.; Richter, H.; Roche, O.; Runtz-Schmitt, V.; Taylor, S., Patent: US2007/123515 A1. 2007. 47.James P. Ferris; Orgel, L. E., The Reactions of Bromomalononitrile with Bases. J. Org. Chem. 1965,30, 2365-2367.
|