跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅曉帆
研究生(外文):Hsiao-Fan Lo
論文名稱:探討synapse defective 1 (SYDE1)功能缺失及胎兒發育遲緩的關聯性–SYDE1調控胎盤細胞移行與入侵
論文名稱(外文):Association of dysfunctional synapse defective 1 (SYDE1) with restricted fetal growth – SYDE1 regulates placental cell migration and invasion
指導教授:陳宏文陳宏文引用關係
口試委員:張震東張功耀黃娟娟陳治平
口試日期:2016-07-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:80
中文關鍵詞:SYDE1GCM1細胞移行/入侵胎兒發育遲緩胎盤
外文關鍵詞:SYDE1GCM1cell migration/invasionIUGRplacenta
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
GCM1 (glial cells missing 1)調控胎盤滋養層細胞 (trophoblast cell)的分化與功能,是維持胎盤發育的重要轉錄因子之一。GCM1表現量下降與子癲前症的發生有所相關,顯示GCM1所調控的標的基因表現異常,可能導致妊娠併發症發病原因之一。在這篇研究當中,我們鑑定了一個新的GCM1標的基因-SYDE1,此基因包含了RhoGAP區域並且高度表現在人類胎盤組織,且我們證明了SYDE1會促進細胞骨架重構,細胞移行與入侵的能力。更重要的是,Syde1的基因剔除小鼠會伴隨著胎盤-卵黃囊屏障(placental-yolk sac barrier),母體與滋養層細胞的交界面(maternal-trophoblast interface),以及胎盤血管形成的構造不正常導致於胎兒發育遲緩與胎盤過小的現象。此外,藉由基因晶片分析Syde1基因剔除鼠的胎盤,發現腎素-血管收縮素系統(renin-angiotensin system)表現有所改變,而在懷孕過程中,在缺乏Syde1的胎盤中Syde1的同源基因-Syde2表現量有所上升,所以推測Syde2可能會補償Syde1的功能缺失。在透過shRNA抑制SYDE1表現的人類絨毛膜癌細胞株(JAR trophoblast cell)中同時表現SYDE2,觀察到正常功能的SYDE2會恢復細胞移行與入侵能力,而GAP區域功能缺失的SYDE2則無法彌補。更進一步在臨床研究上觀察發現,與相當妊娠週齡的控制組相比,SYDE1在早產與足月出生且胎兒發育過小的胎盤中表現量較低。綜合以上結果,我們證實了在胎盤發育過程中,GCM1透過調控SYDE1的表現而影響滋養層細胞的移行與入侵能力,而SYDE1表現過低與胎兒發育遲緩有所相關性。

The GCM1 transcription factor regulates trophoblast differentiation and function during placentation. Decreased GCM1 expression is associated with preeclampsia, suggesting that abnormal expression of GCM1 target genes may contribute to the pathogenesis of pregnancy complications. Here we identified a novel GCM1 target gene SYDE1, which encodes a RhoGAP highly expressed in human placenta, and demonstrated that SYDE1 promotes cytoskeletal remodeling and cell migration and invasion. Importantly, genetic ablation of murine Syde1 results in small fetuses and placentas with aberrant phenotypes in the placental-yolk sac barrier, maternal-trophoblast interface, and placental vasculogenesis. Correspondingly, microarray analysis revealed altered expression of the renin-angiotensin system in Syde1-knockout placenta. As pregnancy proceeds, growth restriction of the Syde1-/- fetuses and placentas continues with elevated expression of the Syde1 homologue Syde2 in placenta. Syde2 may compensate for the loss of Syde1 function because SYDE2, but not the GAP-dead SYDE2 mutant, reverses migration and invasion activities of SYDE1-knockdown JAR trophoblast cells. Clinically, we further detected decreased SYDE1 expression in preterm and term IUGR placentas compared with gestational age-matched controls. Our study reveals a novel mechanism for GCM1 and SYDE1 in regulation of trophoblast cell migration and invasion during placental development and that decreased SYDE1 expression is associated with IUGR.

中文摘要 v
Abstract vi
Significance and purpose vii
Chapter I 1
I. Introduction 1
1. Placental function and development 1
2 Glial cells missing 1 (GCM1) 5
3 Synapse defective 1 (SYDE1) 9
4 Rho GTPase family 10
5 Uteroplacental renin-angiotensin system (RAS) 13
6 Preeclampsia (PE) and intrauterine growth restriction (IUGR) 17
Chapter II 20
II. Materials and methods 20
1. Plasmid constructs 20
2. Cell culture, transfection, lentivirus transduction and reporter gene assay 20
3. Antibodies 21
4. Chromatin immunoprecipitation-on-chip (ChIP-chip) analysis 21
5. Quantitative real-time PCR 22
6. Immunohistochemistry and immunofluorescence microscopy 22
7. Cell migration and invasion assay 23
8. Cell proliferation and wound healing assay 24
9. RNA interference 25
10. Rho and Rac1/Cdc42 activation assay 25
11. Gene targeting 26
12. Primary mouse trophoblast cell culture 27
13. SYDE1 expression in IUGR placentas 27
14. Gene expression profiling 28
15. Statistical analysis 29
Chapter III 30
III. Results 30
3.1 SYDE1 is a GCM1 target gene 30
3.2 SYDE1 regulates placental cell migration and invasion 31
3.3 Regulation of cytoskeletal remodeling by SYDE1 31
3.4 Fetal growth restriction in Syde1 knockout mice 32
3.5 Decreased expression of SYDE1 in IUGR placentas 34
3.6 Differential expression of renin-angiotensin system (RAS) in Syde1-knockout placenta 34
3.7 Syde2 may complement the Syde1 function in mouse placenta 35
Chapter IV 37
IV. Discussions 37
Chapter V 40
V. Figures 40
Figure 1. GCM1 regulates SYDE1 gene expression. 42
Figure 2. Expression of SYDE1 in human placenta. 43
Figure 3. SYDE1 stimulates placental cell migration and invasion. 46
Figure 4. Regulation of placental cell migration by SYDE1. 47
Figure 5. SYDE1 regulates migration and invasion of primary human trophoblast cells. 48
Figure 6. Regulation of placental cell migration and small GTPase activity by SYDE1. 50
Figure 7. Generation of Syde1 knockout mice. 51
Figure 8. Phenotypic analysis of Syde1 knockout mouse. 55
Figure 9. Growth curves of Syde1-KO and wild-type mice. 56
Figure 10. Syde1 regulates mouse trophoblast invasion. 57
Figure 11. SYDE1 expression is decreased in human IUGR placentas. 58
Figure 12. Gene expression profiling in wild-type and Syde1-KO placentas. 61
Figure 13. Functional redundancy between Syde1 and Syde2. 63
Figure 14. Comparisons of mouse and human placenta. 64
Chapter VI 65
VII. References 65






1.Lunghi, L., Ferretti, M.E., Medici, S., Biondi, C., and Vesce, F. (2007). Control of human trophoblast function. Reprod Biol Endocrinol 5, 6.
2.Red-Horse, K., Zhou, Y., Genbacev, O., Prakobphol, A., Foulk, R., McMaster, M., and Fisher, S.J. (2004). Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 114, 744-754.
3.Knofler, M. (2010). Critical growth factors and signalling pathways controlling human trophoblast invasion. Int J Dev Biol 54, 269-280.
4.Ji, L., Brkic, J., Liu, M., Fu, G., Peng, C., and Wang, Y.L. (2013). Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 34, 981-1023.
5.Baczyk, D., Drewlo, S., Proctor, L., Dunk, C., Lye, S., and Kingdom, J. (2009). Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ 16, 719-727.
6.Cheong, M.L., Wang, L.J., Chuang, P.Y., Chang, C.W., Lee, Y.S., Lo, H.F., Tsai, M.S., and Chen, H. (2016). A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGbeta Expression and Cell Differentiation. Mol Cell Biol 36, 197-209.
7.Mi, S., Lee, X., Li, X., Veldman, G.M., Finnerty, H., Racie, L., LaVallie, E., Tang, X.Y., Edouard, P., Howes, S., et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785-789.
8.Okahara, G., Matsubara, S., Oda, T., Sugimoto, J., Jinno, Y., and Kanaya, F. (2004). Expression analyses of human endogenous retroviruses (HERVs): tissue-specific and developmental stage-dependent expression of HERVs. Genomics 84, 982-990.
9.Nakamura, O. (2009). Children''s immunology, what can we learn from animal studies (1): Decidual cells induce specific immune system of feto-maternal interface. J Toxicol Sci 34 Suppl 2, Sp331-339.
10.Kemp, B., Kertschanska, S., Kadyrov, M., Rath, W., Kaufmann, P., and Huppertz, B. (2002). Invasive depth of extravillous trophoblast correlates with cellular phenotype: a comparison of intra- and extrauterine implantation sites. Histochem Cell Biol 117, 401-414.
11.Caniggia, I., Winter, J., Lye, S.J., and Post, M. (2000). Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta 21 Suppl A, S25-30.
12.Pijnenborg, R., Vercruysse, L., and Hanssens, M. (2006). The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27, 939-958.
13.Lacey, H., Haigh, T., Westwood, M., and Aplin, J.D. (2002). Mesenchymally-derived insulin-like growth factor 1 provides a paracrine stimulus for trophoblast migration. BMC Dev Biol 2, 5.
14.Red-Horse, K., Drake, P.M., and Fisher, S.J. (2004). Human pregnancy: the role of chemokine networks at the fetal-maternal interface. Expert Rev Mol Med 6, 1-14.
15.Knofler, M., and Pollheimer, J. (2012). IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta 33 Suppl, S55-62.
16.Rossant, J., and Cross, J.C. (2001). Placental development: lessons from mouse mutants. Nature reviews. Genetics 2, 538-548.
17.Watson, E.D., and Cross, J.C. (2005). Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) 20, 180-193.
18.Malassine, A., Frendo, J.L., and Evain-Brion, D. (2003). A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update 9, 531-539.
19.Lyall, F. (2006). Mechanisms regulating cytotrophoblast invasion in normal pregnancy and pre-eclampsia. Aust N Z J Obstet Gynaecol 46, 266-273.
20.Librach, C.L., Werb, Z., Fitzgerald, M.L., Chiu, K., Corwin, N.M., Esteves, R.A., Grobelny, D., Galardy, R., Damsky, C.H., and Fisher, S.J. (1991). 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol 113, 437-449.
21.Bass, K.E., Li, H., Hawkes, S.P., Howard, E., Bullen, E., Vu, T.K., McMaster, M., Janatpour, M., and Fisher, S.J. (1997). Tissue inhibitor of metalloproteinase-3 expression is upregulated during human cytotrophoblast invasion in vitro. Dev Genet 21, 61-67.
22.Damsky, C.H., Librach, C., Lim, K.H., Fitzgerald, M.L., McMaster, M.T., Janatpour, M., Zhou, Y., Logan, S.K., and Fisher, S.J. (1994). Integrin switching regulates normal trophoblast invasion. Development 120, 3657-3666.
23.Zhou, Y., Fisher, S.J., Janatpour, M., Genbacev, O., Dejana, E., Wheelock, M., and Damsky, C.H. (1997). Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99, 2139-2151.
24.Rosario, G.X., Konno, T., and Soares, M.J. (2008). Maternal hypoxia activates endovascular trophoblast cell invasion. Dev Biol 314, 362-375.
25.Adamson, S.L., Lu, Y., Whiteley, K.J., Holmyard, D., Hemberger, M., Pfarrer, C., and Cross, J.C. (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 250, 358-373.
26.Cross, J.C., Baczyk, D., Dobric, N., Hemberger, M., Hughes, M., Simmons, D.G., Yamamoto, H., and Kingdom, J.C. (2003). Genes, development and evolution of the placenta. Placenta 24, 123-130.
27.Hosoya, T., Takizawa, K., Nitta, K., and Hotta, Y. (1995). glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025-1036.
28.Schreiber, J., Enderich, J., and Wegner, M. (1998). Structural requirements for DNA binding of GCM proteins. Nucleic Acids Res 26, 2337-2343.
29.Cohen, S.X., Moulin, M., Hashemolhosseini, S., Kilian, K., Wegner, M., and Muller, C.W. (2003). Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO J 22, 1835-1845.
30.Yang, C.S., Yu, C., Chuang, H.C., Chang, C.W., Chang, G.D., Yao, T.P., and Chen, H. (2005). FBW2 targets GCMa to the ubiquitin-proteasome degradation system. J Biol Chem 280, 10083-10090.
31.Knerr, I., Schubert, S.W., Wich, C., Amann, K., Aigner, T., Vogler, T., Jung, R., Dotsch, J., Rascher, W., and Hashemolhosseini, S. (2005). Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS letters 579, 3991-3998.
32.Yu, C., Shen, K., Lin, M., Chen, P., Lin, C., Chang, G.D., and Chen, H. (2002). GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277, 50062-50068.
33.Chiang, M.H., Liang, F.Y., Chen, C.P., Chang, C.W., Cheong, M.L., Wang, L.J., Liang, C.Y., Lin, F.Y., Chou, C.C., and Chen, H. (2009). Mechanism of hypoxia-induced GCM1 degradation: implications for the pathogenesis of preeclampsia. J Biol Chem 284, 17411-17419.
34.Chang, C.W., Chuang, H.C., Yu, C., Yao, T.P., and Chen, H. (2005). Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa. Mol Cell Biol 25, 8401-8414.
35.Lin, F.Y., Chang, C.W., Cheong, M.L., Chen, H.C., Lee, D.Y., Chang, G.D., and Chen, H. (2011). Dual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation. Nucleic Acids Res 39, 848-861.
36.Chou, C.C., Chang, C., Liu, J.H., Chen, L.F., Hsiao, C.D., and Chen, H. (2007). Small ubiquitin-like modifier modification regulates the DNA binding activity of glial cell missing Drosophila homolog a. J Biol Chem 282, 27239-27249.
37.Chang, C.W., Chang, G.D., and Chen, H. (2011). A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion. Mol Cell Biol 31, 3820-3831.
38.Hashemolhosseini, S., and Wegner, M. (2004). Impacts of a new transcription factor family: mammalian GCM proteins in health and disease. J Cell Biol 166, 765-768.
39.Yamada, K., Ogawa, H., Honda, S., Harada, N., and Okazaki, T. (1999). A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J Biol Chem 274, 32279-32286.
40.Chen, C.P., Chen, L.F., Yang, S.R., Chen, C.Y., Ko, C.C., Chang, G.D., and Chen, H. (2008). Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod 79, 815-823.
41.Malassine, A., Blaise, S., Handschuh, K., Lalucque, H., Dupressoir, A., Evain-Brion, D., and Heidmann, T. (2007). Expression of the fusogenic HERV-FRD Env glycoprotein (syncytin 2) in human placenta is restricted to villous cytotrophoblastic cells. Placenta 28, 185-191.
42.Esnault, C., Priet, S., Ribet, D., Vernochet, C., Bruls, T., Lavialle, C., Weissenbach, J., and Heidmann, T. (2008). A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci U S A 105, 17532-17537.
43.Vargas, A., Moreau, J., Landry, S., LeBellego, F., Toufaily, C., Rassart, E., Lafond, J., and Barbeau, B. (2009). Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol 392, 301-318.
44.Liang, C.Y., Wang, L.J., Chen, C.P., Chen, L.F., Chen, Y.H., and Chen, H. (2010). GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biol Reprod 83, 387-395.
45.Wang, L.J., Cheong, M.L., Lee, Y.S., Lee, M.T., and Chen, H. (2012). High-temperature requirement protein A4 (HtrA4) suppresses the fusogenic activity of syncytin-1 and promotes trophoblast invasion. Mol Cell Biol 32, 3707-3717.
46.Schreiber, J., Riethmacher-Sonnenberg, E., Riethmacher, D., Tuerk, E.E., Enderich, J., Bosl, M.R., and Wegner, M. (2000). Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol Cell Biol 20, 2466-2474.
47.Anson-Cartwright, L., Dawson, K., Holmyard, D., Fisher, S.J., Lazzarini, R.A., and Cross, J.C. (2000). The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet 25, 311-314.
48.Bainbridge, S.A., Minhas, A., Whiteley, K.J., Qu, D., Sled, J.G., Kingdom, J.C., and Adamson, S.L. (2012). Effects of reduced Gcm1 expression on trophoblast morphology, fetoplacental vascularity, and pregnancy outcomes in mice. Hypertension 59, 732-739.
49.Rittinger, K., Walker, P.A., Eccleston, J.F., Nurmahomed, K., Owen, D., Laue, E., Gamblin, S.J., and Smerdon, S.J. (1997). Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693-697.
50.Hallam, S.J., Goncharov, A., McEwen, J., Baran, R., and Jin, Y. (2002). SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat Neurosci 5, 1137-1146.
51.Whited, J.L., and Garrity, P.A. (2002). Specifying axon identity with Syd-1. Nat Neurosci 5, 1107-1108.
52.Astigarraga, S., Hofmeyer, K., Farajian, R., and Treisman, J.E. (2010). Three Drosophila liprins interact to control synapse formation. J Neurosci 30, 15358-15368.
53.Owald, D., Fouquet, W., Schmidt, M., Wichmann, C., Mertel, S., Depner, H., Christiansen, F., Zube, C., Quentin, C., Korner, J., et al. (2010). A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J Cell Biol 188, 565-579.
54.Patel, M.R., Lehrman, E.K., Poon, V.Y., Crump, J.G., Zhen, M., Bargmann, C.I., and Shen, K. (2006). Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 9, 1488-1498.
55.Stigloher, C., Zhan, H., Zhen, M., Richmond, J., and Bessereau, J.L. (2011). The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions. J Neurosci 31, 4388-4396.
56.Owald, D., Khorramshahi, O., Gupta, V.K., Banovic, D., Depner, H., Fouquet, W., Wichmann, C., Mertel, S., Eimer, S., Reynolds, E., et al. (2012). Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly. Nat Neurosci 15, 1219-1226.
57.Chia, P.H., Li, P., and Shen, K. (2013). Cell biology in neuroscience: Cellular and molecular mechanisms underlying presynapse formation. J Cell Biol 203, 11-22.
58.Wentzel, C., Sommer, J.E., Nair, R., Stiefvater, A., Sibarita, J.B., and Scheiffele, P. (2013). mSYD1A, a mammalian synapse-defective-1 protein, regulates synaptogenic signaling and vesicle docking. Neuron 78, 1012-1023.
59.Huang, R.Y., Kuay, K.T., Tan, T.Z., Asad, M., Tang, H.M., Ng, A.H., Ye, J., Chung, V.Y., and Thiery, J.P. (2015). Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget 6, 22098-22113.
60.Oku, S., Takahashi, N., Fukata, Y., and Fukata, M. (2013). In silico screening for palmitoyl substrates reveals a role for DHHC1/3/10 (zDHHC1/3/11)-mediated neurochondrin palmitoylation in its targeting to Rab5-positive endosomes. J Biol Chem 288, 19816-19829.
61.Saben, J., Zhong, Y., McKelvey, S., Dajani, N.K., Andres, A., Badger, T.M., Gomez-Acevedo, H., and Shankar, K. (2014). A comprehensive analysis of the human placenta transcriptome. Placenta 35, 125-131.
62.Aspenstrom, P., Fransson, A., and Saras, J. (2004). Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377, 327-337.
63.Schmidt, A., and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16, 1587-1609.
64.Bernards, A. (2003). GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 1603, 47-82.
65.Olofsson, B. (1999). Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11, 545-554.
66.Jaffe, A.B., and Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21, 247-269.
67.Mattila, P.K., and Lappalainen, P. (2008). Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9, 446-454.
68.Millard, T.H., Sharp, S.J., and Machesky, L.M. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 380, 1-17.
69.Mayor, R., and Theveneau, E. (2014). The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J 457, 19-26.
70.Vega, F.M., Fruhwirth, G., Ng, T., and Ridley, A.J. (2011). RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193, 655-665.
71.Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A., and Collard, J.G. (1999). Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147, 1009-1022.
72.Sanders, L.C., Matsumura, F., Bokoch, G.M., and de Lanerolle, P. (1999). Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083-2085.
73.Ohta, Y., Hartwig, J.H., and Stossel, T.P. (2006). FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8, 803-814.
74.Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., Sahai, E., and Marshall, C.J. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510-523.
75.Nakamura, F. (2013). FilGAP and its close relatives: a mediator of Rho-Rac antagonism that regulates cell morphology and migration. Biochem J 453, 17-25.
76.Nicola, C., Chirpac, A., Lala, P.K., and Chakraborty, C. (2008). Roles of Rho guanosine 5''-triphosphatase A, Rho kinases, and extracellular signal regulated kinase (1/2) in prostaglandin E2-mediated migration of first-trimester human extravillous trophoblast. Endocrinology 149, 1243-1251.
77.Nicola, C., Lala, P.K., and Chakraborty, C. (2008). Prostaglandin E2-mediated migration of human trophoblast requires RAC1 and CDC42. Biol Reprod 78, 976-982.
78.Shiokawa, S., Iwashita, M., Akimoto, Y., Nagamatsu, S., Sakai, K., Hanashi, H., Kabir-Salmani, M., Nakamura, Y., Uehata, M., and Yoshimura, Y. (2002). Small guanosine triphospatase RhoA and Rho-associated kinase as regulators of trophoblast migration. J Clin Endocrinol Metab 87, 5808-5816.
79.Shields, S.K., Nicola, C., and Chakraborty, C. (2007). Rho guanosine 5''-triphosphatases differentially regulate insulin-like growth factor I (IGF-I) receptor-dependent and -independent actions of IGF-II on human trophoblast migration. Endocrinology 148, 4906-4917.
80.Brown, M.A., Wang, J., and Whitworth, J.A. (1997). The renin-angiotensin-aldosterone system in pre-eclampsia. Clin Exp Hypertens 19, 713-726.
81.Hsueh, W.A. (1988). Renin in the female reproductive system. Cardiovasc Drugs Ther 2, 473-477.
82.Shah, D.M. (2005). Role of the renin-angiotensin system in the pathogenesis of preeclampsia. Am J Physiol Renal Physiol 288, F614-625.
83.Coffman, T.M. (1998). Gene targeting in physiological investigations: studies of the renin-angiotensin system. Am J Physiol 274, F999-1005.
84.Nielsen, A.H., Schauser, K.H., and Poulsen, K. (2000). Current topic: the uteroplacental renin-angiotensin system. Placenta 21, 468-477.
85.Li, G., Liu, Y., Zhu, Y., Liu, A., Xu, Y., Li, X., Li, Z., Su, J., and Sun, L. (2013). ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats. Lung 191, 327-336.
86.Imai, Y., Kuba, K., Ohto-Nakanishi, T., and Penninger, J.M. (2010). Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J 74, 405-410.
87.Hsueh, W.A., Luetscher, J.A., Carlson, E.J., Grislis, G., Fraze, E., and McHargue, A. (1982). Changes in active and inactive renin throughout pregnancy. J Clin Endocrinol Metab 54, 1010-1016.
88.Cooper, A.C., Robinson, G., Vinson, G.P., Cheung, W.T., and Broughton Pipkin, F. (1999). The localization and expression of the renin-angiotensin system in the human placenta throughout pregnancy. Placenta 20, 467-474.
89.Benoit, C., Gu, Y., Zhang, Y., Alexander, J.S., and Wang, Y. (2008). Contractility of placental vascular smooth muscle cells in response to stimuli produced by the placenta: roles of ACE vs. non-ACE and AT1 vs. AT2 in placental vessel cells. Placenta 29, 503-509.
90.Zhou, C.C., Ahmad, S., Mi, T., Abbasi, S., Xia, L., Day, M.C., Ramin, S.M., Ahmed, A., Kellems, R.E., and Xia, Y. (2008). Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension 51, 1010-1019.
91.Laskowska, M., Leszczynska-Gorzelak, B., and Oleszczuk, J. (2003). Placental angiotensin II receptor AT1R in normotensive patients and its correlation between infant birth weight. Eur J Obstet Gynecol Reprod Biol 109, 166-170.
92.Yang, J., Shang, J., Zhang, S., Li, H., and Liu, H. (2013). The role of the renin-angiotensin-aldosterone system in preeclampsia: genetic polymorphisms and microRNA. J Mol Endocrinol 50, R53-66.
93.Hanssens, M., Keirse, M.J., Spitz, B., and van Assche, F.A. (1991). Angiotensin II levels in hypertensive and normotensive pregnancies. Br J Obstet Gynaecol 98, 155-161.
94.Weir, R.J., Brown, J.J., Fraser, R., Kraszewski, A., Lever, A.F., McIlwaine, G.M., Morton, J.J., Robertson, J.I., and Tree, M. (1973). Plasma renin, renin substrate, angiotensin II, and aldosterone in hypertensive disease of pregnancy. Lancet 1, 291-294.
95.Gant, N.F., Daley, G.L., Chand, S., Whalley, P.J., and MacDonald, P.C. (1973). A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 52, 2682-2689.
96.Valdes, G., Germain, A.M., Corthorn, J., Berrios, C., Foradori, A.C., Ferrario, C.M., and Brosnihan, K.B. (2001). Urinary vasodilator and vasoconstrictor angiotensins during menstrual cycle, pregnancy, and lactation. Endocrine 16, 117-122.
97.Merrill, D.C., Karoly, M., Chen, K., Ferrario, C.M., and Brosnihan, K.B. (2002). Angiotensin-(1-7) in normal and preeclamptic pregnancy. Endocrine 18, 239-245.
98.Herse, F., Dechend, R., Harsem, N.K., Wallukat, G., Janke, J., Qadri, F., Hering, L., Muller, D.N., Luft, F.C., and Staff, A.C. (2007). Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension 49, 604-611.
99.Shah, D.M., Banu, J.M., Chirgwin, J.M., and Tekmal, R.R. (2000). Reproductive tissue renin gene expression in preeclampsia. Hypertension in pregnancy 19, 341-351.
100.AbdAlla, S., Lother, H., el Massiery, A., and Quitterer, U. (2001). Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 7, 1003-1009.
101.Zhou, C.C., Ahmad, S., Mi, T., Xia, L., Abbasi, S., Hewett, P.W., Sun, C., Ahmed, A., Kellems, R.E., and Xia, Y. (2007). Angiotensin II induces soluble fms-Like tyrosine kinase-1 release via calcineurin signaling pathway in pregnancy. Circ Res 100, 88-95.
102.Wallukat, G., Homuth, V., Fischer, T., Lindschau, C., Horstkamp, B., Jupner, A., Baur, E., Nissen, E., Vetter, K., Neichel, D., et al. (1999). Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 103, 945-952.
103.Irani, R.A., Zhang, Y., Zhou, C.C., Blackwell, S.C., Hicks, M.J., Ramin, S.M., Kellems, R.E., and Xia, Y. (2010). Autoantibody-mediated angiotensin receptor activation contributes to preeclampsia through tumor necrosis factor-alpha signaling. Hypertension 55, 1246-1253.
104.Gaiser, R. Preeclampsia: What''s New? Advances in Anesthesia 26, 103-119.
105.Sibai, B.M. (2003). Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol 102, 181-192.
106.Jansson, T., and Powell, T.L. (2006). IFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? -- a review. Placenta 27 Suppl A, S91-97.
107.Kaufmann, P., Black, S., and Huppertz, B. (2003). Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 69, 1-7.
108.Pijnenborg, R., Anthony, J., Davey, D.A., Rees, A., Tiltman, A., Vercruysse, L., and van Assche, A. (1991). Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol 98, 648-655.
109.McFadyen, I.R., Price, A.B., and Geirsson, R.T. (1986). The relation of birthweight to histological appearances in vessels of the placental bed. Br J Obstet Gynaecol 93, 476-481.
110.Khong, T.Y., De Wolf, F., Robertson, W.B., and Brosens, I. (1986). Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 93, 1049-1059.
111.Levine, R.J., Lam, C., Qian, C., Yu, K.F., Maynard, S.E., Sachs, B.P., Sibai, B.M., Epstein, F.H., Romero, R., Thadhani, R., et al. (2006). Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355, 992-1005.
112.Levine, R.J., Maynard, S.E., Qian, C., Lim, K.H., England, L.J., Yu, K.F., Schisterman, E.F., Thadhani, R., Sachs, B.P., Epstein, F.H., et al. (2004). Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350, 672-683.
113.Gu, Y., Lewis, D.F., and Wang, Y. (2008). Placental productions and expressions of soluble endoglin, soluble fms-like tyrosine kinase receptor-1, and placental growth factor in normal and preeclamptic pregnancies. J Clin Endocrinol Metab 93, 260-266.
114.Zeng, X., Sun, Y., Yang, H.X., Li, D., Li, Y.X., Liao, Q.P., and Wang, Y.L. (2009). Plasma level of soluble c-Met is tightly associated with the clinical risk of preeclampsia. Am J Obstet Gynecol 201, 618.e611-617.
115.Silasi, M., Cohen, B., Karumanchi, S.A., and Rana, S. (2010). Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia. Obstet Gynecol Clin North Am 37, 239-253.
116.Lapaire, O., Grill, S., Lalevee, S., Kolla, V., Hosli, I., and Hahn, S. (2012). Microarray screening for novel preeclampsia biomarker candidates. Fetal Diagn Ther 31, 147-153.
117.Forbes, K., and Westwood, M. (2010). Maternal growth factor regulation of human placental development and fetal growth. J Endocrinol 207, 1-16.
118.Chang, M., Mukherjea, D., Gobble, R.M., Groesch, K.A., Torry, R.J., and Torry, D.S. (2008). Glial cell missing 1 regulates placental growth factor (PGF) gene transcription in human trophoblast. Biol Reprod 78, 841-851.
119.Irani, R.A., and Xia, Y. (2008). The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta 29, 763-771.
120.Verdonk, K., Visser, W., Van Den Meiracker, A.H., and Danser, A.H. (2014). The renin-angiotensin-aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin Sci (Lond) 126, 537-544.
121.Kingdom, J.C., McQueen, J., Connell, J.M., and Whittle, M.J. (1993). Fetal angiotensin II levels and vascular (type I) angiotensin receptors in pregnancies complicated by intrauterine growth retardation. Br J Obstet Gynaecol 100, 476-482.
122.Saito, T., Ishida, J., Takimoto-Ohnishi, E., Takamine, S., Shimizu, T., Sugaya, T., Kato, H., Matsuoka, T., Nangaku, M., Kon, Y., et al. (2004). An essential role for angiotensin II type 1a receptor in pregnancy-associated hypertension with intrauterine growth retardation. FASEB J 18, 388-390.
123.Bharadwaj, M.S., Strawn, W.B., Groban, L., Yamaleyeva, L.M., Chappell, M.C., Horta, C., Atkins, K., Firmes, L., Gurley, S.B., and Brosnihan, K.B. (2011). Angiotensin-converting enzyme 2 deficiency is associated with impaired gestational weight gain and fetal growth restriction. Hypertension 58, 852-858.
124.Mistry, H.D., Kurlak, L.O., and Broughton Pipkin, F. (2013). The placental renin-angiotensin system and oxidative stress in pre-eclampsia. Placenta 34, 182-186.
125.Takimoto, E., Ishida, J., Sugiyama, F., Horiguchi, H., Murakami, K., and Fukamizu, A. (1996). Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science 274, 995-998.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top