(3.234.221.162) 您好!臺灣時間:2021/04/14 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林庭揚
研究生(外文):Ting-Yang Lin
論文名稱:TIFA蛋白在血管內皮細胞先天性免疫反應中之角色
論文名稱(外文):The role of TIFA in endothelial innate immunity
指導教授:史允中蔡明道蔡明道引用關係
指導教授(外文):John Y-J. Shyy
口試委員:張震東張茂山張瀞仁
口試日期:2016-06-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:91
中文關鍵詞:TIFA血管內皮細胞先天性免疫發炎體剪切應力
外文關鍵詞:TIFAendothelial cellsinnate immunityNLRP3 inflammasomeshear stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
類鐸受體所介導的NF-kappaB的激活是響應於助氧化和促炎性刺激的血管內皮細胞的一個主要的先天免疫反義。 我們確定了TIFA [TNFalpha receptor-associated factor(TRAF) interacting protein with a FHA damain]在血管內皮細胞中不但參與引發NLRP3炎症小體的誘導(信號1) 也參與了其活化(信號2)。我們首先發現氧化和炎性壓力如atheroprone流和高脂血症在in vitro及 in vivo實驗中皆能誘發與活化TIFA。接著,對於信號1的起動,固醇調節元件結合蛋白2(SREBP2)此一轉錄因子能上調TIFA的信使RNA表現,藉此誘導NF-kappaB和增強NLRP3炎症小體成員的轉錄。然而對於信號2的活化,我們實驗室發現Akt參與了TIFA Thr9的磷酸化,此磷酸畫的作用使TIFA-TIFA嗜同聚合體形成。 Thr9磷酸依賴性TIFA聚合體能夠促使NLRP3炎症小體的具合與活化,而此聚合作用是透過在活化的內皮細胞中TIFA和caspase-1之間的相互作用所達成的。另外, 當TIFA被過度表達時,我們發現我們發現細胞的自噬作用, 單核細胞的黏附作用,以及細胞焦亡反應皆細胞焦亡反應皆上升了。綜合以上結果,我們發現TIFA是透過誘導與加強NLRP3炎症小體活化之信號1和2的內皮先天免疫反應的關鍵介體。


Toll-like receptor-mediated NF-κB activation is a major innate immune reaction of vascular endothelial cells (ECs) in response to pro-oxidative and pro-inflammatory stimuli. We identified that TIFA [abbreviated from TNFα receptor-associated factor (TRAF)-interacting protein with a forkhead-associated (FHA) domain] is a novel regulator of both priming (Signal 1) and activating (Signal 2) signals of NLRP3 inflammasome in ECs. Oxidative and inflammatory stresses such as atheroprone flow and hyperlipidemia induce and activate TIFA in vitro and in vivo. For the priming of Signal 1, sterol regulatory element-binding protein 2 (SREBP2) transactivates TIFA, which in turn induces NF-κB and augments the transcription of NLRP3 inflammasome components. For the activation of Signal 2, our lab has found that Akt is involved in TIFA Thr9 phosphorylation, which is essential for TIFA-TIFA homophilic oligomerization. Thr9 phosphorylation-dependent TIFA oligomerization facilitates the higher-order assembly of NLRP3 inflammasome, as indicated by the interactions between TIFA and caspase-1 in the activated ECs. Furthermore, we revealed that overexpression of TIFA leads to increased autophagy, monocyte adhesion and pyroptosis, indicationg. Our results suggest that TIFA is a crucial mediator in the endothelial innate immune response by potentiating and amplifying NLRP3 inflammasome via augmenting Signals 1 and 2.

誌謝……………………………………………………………………………………...ii
中文摘要………………………….………………………………………………….....iii
Abstract ………………………………………………………………………...……..iv
Introduction
1. Endothelial dysfunction and cardiovascular diseases………………………..1
2. Atherosclerosis……………………………………………………………………..2
3. Shear stress and atherosclerosis.………………………………………..…......3
4. Endothelium innate immune response.………………………………………...4
5. Oxidative stress and Endothelial dysfunction…………………………….......4
6. NLRP3 inflammasome in atherosclerosis..………………………………….....6
7. Sterol regulatory element-binding protein 2 (SREBP2)…….…………………8
8. FHA domain containing protein.…………….………………… ………………..9
9. TRAF-interacting protein with a FHA domain (TIFA)..………….….………..10
10. Inflammasome and pyroptosis………….…………………………………….11
11. Inflammasome and autophagy………….…………………………………….11
12. Inflammasome and monocyte adhesion. …………………………………...12
Rationale and Hypothesis…………………………………………………………..14
Results
1. Oxidative stress induces TIFA in vitro and in vivo..…………………...…….15
2. SREBP2 transactivates TIFA in ECs.…………………………………………..25
3. TIFA is involved in Signal 1 of NLRP3 inflammasome……………………....36
4. TIFA induces the assembly and activation of NLRP3 inflammasome via Signal 2...41
5. TIFA activation induces pyroptosis..………….……………………………….50
6. SREBP2 and TIFA activation are involved in endothelial cell autophagy...53
7. TIFA induces monocyte adhesion to ECs……..……..……………………….57
Materials & Methods
1. Antibodies and reagents………………………………………………………...59
2. Cell line and cell culture ……………………………………………………......59
3. Shear stress experiments…………………………………………………........60
4. RNAi inhibition and adenovirus infection…………………………………......60
5. Binding site prediction and ChIP assay………………………………….…...61
6. Immunoblotting…………………………………………………………….….....61
7. RNA purification and Quantitative RT-PCR (qRT-PCR) …………………….62
8. Animal experiments………………………………………………………..…….62
9. Inflammasome reconstitution assay…………………………………….….….63
10. Immunoprecipitation.………………………………………………………......63
11. Flow cytometry detection of pyroptotic cells..……………………...……...63
12. Monocyte adhesion assay………………………………………………...…..64
13. Statistical analysis……………………………………………………….….….64
Discussion……………………………………..…………………………….……….65
References………………………………………………………………….………..73
Graphic summary…………..……………………………………89
Tables…………..……………………………………………90



Allahverdian, S., Pannu, P.S., and Francis, G.A. (2012). Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovascular research 95, 165-172.
Ando, J., and Kamiya, A. (1996). Flow-dependent regulation of gene expression in vascular endothelial cells. Japanese heart journal 37, 19-32.
Arbibe, L., Mira, J.P., Teusch, N., Kline, L., Guha, M., Mackman, N., Godowski, P.J., Ulevitch, R.J., and Knaus, U.G. (2000). Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nature immunology 1, 533-540.
Bell, D.M., Johns, T.E., and Lopez, L.M. (1998). Endothelial dysfunction: implications for therapy of cardiovascular diseases. The Annals of pharmacotherapy 32, 459-470.
Bergsbaken, T., Fink, S.L., and Cookson, B.T. (2009). Pyroptosis: host cell death and inflammation. Nature reviews. Microbiology 7, 99-109.
Boisrame-Helms, J., Kremer, H., Schini-Kerth, V., and Meziani, F. (2013). Endothelial dysfunction in sepsis. Current vascular pharmacology 11, 150-160.
Busse, R., and Fleming, I. (1996). Endothelial dysfunction in atherosclerosis. Journal of vascular research 33, 181-194.
Byrne, B.G., Dubuisson, J.F., Joshi, A.D., Persson, J.J., and Swanson, M.S. (2013). Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. mBio 4, e00620-00612.
Cai, X., Chen, J., Xu, H., Liu, S., Jiang, Q.X., Halfmann, R., and Chen, Z.J. (2014). Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207-1222.
Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N., and Williamson, B. (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences of the United States of America 72, 3666-3670.
Chen, X., Andresen, B.T., Hill, M., Zhang, J., Booth, F., and Zhang, C. (2008). Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Current hypertension reviews 4, 245-255.
Chen, Z., Martin, M., Li, Z., and Shyy, J.Y. (2014). Endothelial dysfunction: the role of sterol regulatory element-binding protein-induced NOD-like receptor family pyrin domain-containing protein 3 inflammasome in atherosclerosis. Current opinion in lipidology 25, 339-349.
Chen, Z., Wen, L., Martin, M., Hsu, C.Y., Fang, L., Lin, F.M., Lin, T.Y., Geary, M.J., Geary, G.G., Zhao, Y., et al. (2015). Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation 131, 805-814.
Chiu, J.J., Wang, D.L., Chien, S., Skalak, R., and Usami, S. (1998). Effects of disturbed flow on endothelial cells. Journal of biomechanical engineering 120, 2-8.
Chuang, Y.T., Lin, Y.C., Lin, K.H., Chou, T.F., Kuo, W.C., Yang, K.T., Wu, P.R., Chen, R.H., Kimchi, A., and Lai, M.Z. (2011). Tumor suppressor death-associated protein kinase is required for full IL-1beta production. Blood 117, 960-970.
Cominacini, L., Pasini, A.F., Garbin, U., Davoli, A., Tosetti, M.L., Campagnola, M., Rigoni, A., Pastorino, A.M., Lo Cascio, V., and Sawamura, T. (2000). Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. The Journal of biological chemistry 275, 12633-12638.
Coquelle, N., and Glover, J.N. (2010). FHA domain pThr binding specificity: it''s all about me. Structure 18, 1549-1550.
Corda, S., Laplace, C., Vicaut, E., and Duranteau, J. (2001). Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. American journal of respiratory cell and molecular biology 24, 762-768.
Costales, P., Castellano, J., Revuelta-Lopez, E., Cal, R., Aledo, R., Llampayas, O., Nasarre, L., Juarez, C., Badimon, L., and Llorente-Cortes, V. (2013). Lipopolysaccharide downregulates CD91/low-density lipoprotein receptor-related protein 1 expression through SREBP-1 overexpression in human macrophages. Atherosclerosis 227, 79-88.
Cunningham, K.S., and Gotlieb, A.I. (2005). The role of shear stress in the pathogenesis of atherosclerosis. Laboratory investigation; a journal of technical methods and pathology 85, 9-23.
Danese, S., Dejana, E., and Fiocchi, C. (2007). Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. Journal of immunology 178, 6017-6022.
Davies, P.F. (2009). Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nature clinical practice. Cardiovascular medicine 6, 16-26.
Deanfield, J.E., Halcox, J.P., and Rabelink, T.J. (2007). Endothelial function and dysfunction: testing and clinical relevance. Circulation 115, 1285-1295.
Dhillon, R., Clarkson, P., Donald, A.E., Powe, A.J., Nash, M., Novelli, V., Dillon, M.J., and Deanfield, J.E. (1996). Endothelial dysfunction late after Kawasaki disease. Circulation 94, 2103-2106.
Ding, N., Zhang, Y., Loughran, P.A., Wang, Q., Tsung, A., and Billiar, T.R. (2013). TIFA upregulation after hypoxia-reoxygenation is TLR4- and MyD88-dependent and associated with HMGB1 upregulation and release. Free radical biology & medicine 63, 361-367.
Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B.T., and Tschopp, J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674-677.
Durocher, D., and Jackson, S.P. (2002). The FHA domain. FEBS letters 513, 58-66.
Ea, C.K., Sun, L., Inoue, J., and Chen, Z.J. (2004). TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proceedings of the National Academy of Sciences of the United States of America 101, 15318-15323.
Esper, R.J., Nordaby, R.A., Vilarino, J.O., Paragano, A., Cacharron, J.L., and Machado, R.A. (2006). Endothelial dysfunction: a comprehensive appraisal. Cardiovascular diabetology 5, 4.
Fernandes-Alnemri, T., Wu, J., Yu, J.W., Datta, P., Miller, B., Jankowski, W., Rosenberg, S., Zhang, J., and Alnemri, E.S. (2007). The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell death and differentiation 14, 1590-1604.
Fink, S.L., and Cookson, B.T. (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and immunity 73, 1907-1916.
Flammer, A.J., Anderson, T., Celermajer, D.S., Creager, M.A., Deanfield, J., Ganz, P., Hamburg, N.M., Luscher, T.F., Shechter, M., Taddei, S., et al. (2012). The assessment of endothelial function: from research into clinical practice. Circulation 126, 753-767.
Forstermann, U., and Munzel, T. (2006). Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708-1714.
Fukao, T., Tanabe, M., Terauchi, Y., Ota, T., Matsuda, S., Asano, T., Kadowaki, T., Takeuchi, T., and Koyasu, S. (2002). PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nature immunology 3, 875-881.
Gage, J., Hasu, M., Thabet, M., and Whitman, S.C. (2012). Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. The Canadian journal of cardiology 28, 222-229.
Gaudet, R.G., Sintsova, A., Buckwalter, C.M., Leung, N., Cochrane, A., Li, J., Cox, A.D., Moffat, J., and Gray-Owen, S.D. (2015). Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 348, 1251-1255.
Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology 221, 3-12.
Guha, M., and Mackman, N. (2002). The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. The Journal of biological chemistry 277, 32124-32132.
Guo, D., Chien, S., and Shyy, J.Y. (2007). Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circulation research 100, 564-571.
Guo, H., Callaway, J.B., and Ting, J.P. (2015). Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature medicine 21, 677-687.
Hadi, H.A., Carr, C.S., and Al Suwaidi, J. (2005). Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular health and risk management 1, 183-198.
Hajra, L., Evans, A.I., Chen, M., Hyduk, S.J., Collins, T., and Cybulsky, M.I. (2000). The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proceedings of the National Academy of Sciences of the United States of America 97, 9052-9057.
Hofmann, K., and Bucher, P. (1995). The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends in biochemical sciences 20, 347-349.
Huang, C.C., Weng, J.H., Wei, T.Y., Wu, P.Y., Hsu, P.H., Chen, Y.H., Wang, S.C., Qin, D., Hung, C.C., Chen, S.T., et al. (2012). Intermolecular binding between TIFA-FHA and TIFA-pT mediates tumor necrosis factor alpha stimulation and NF-kappaB activation. Molecular and cellular biology 32, 2664-2673.
Hwang, J., Ing, M.H., Salazar, A., Lassegue, B., Griendling, K., Navab, M., Sevanian, A., and Hsiai, T.K. (2003). Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circulation research 93, 1225-1232.
Im, S.S., Yousef, L., Blaschitz, C., Liu, J.Z., Edwards, R.A., Young, S.G., Raffatellu, M., and Osborne, T.F. (2011). Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell metabolism 13, 540-549.
Johnson, F.K., Peyton, K.J., Liu, X.M., Azam, M.A., Shebib, A.R., Johnson, R.A., and Durante, W. (2015). Arginase promotes endothelial dysfunction and hypertension in obese rats. Obesity 23, 383-390.
Kanamori, M., Suzuki, H., Saito, R., Muramatsu, M., and Hayashizaki, Y. (2002). T2BP, a novel TRAF2 binding protein, can activate NF-kappaB and AP-1 without TNF stimulation. Biochemical and biophysical research communications 290, 1108-1113.
Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology 11, 373-384.
Lahera, V., Goicoechea, M., de Vinuesa, S.G., Miana, M., de las Heras, N., Cachofeiro, V., and Luno, J. (2007). Endothelial dysfunction, oxidative stress and inflammation in atherosclerosis: beneficial effects of statins. Current medicinal chemistry 14, 243-248.
Latz, E., Xiao, T.S., and Stutz, A. (2013). Activation and regulation of the inflammasomes. Nature reviews. Immunology 13, 397-411.
Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
Ley, K., Miller, Y.I., and Hedrick, C.C. (2011). Monocyte and macrophage dynamics during atherogenesis. Arteriosclerosis, thrombosis, and vascular biology 31, 1506-1516.
Li, J., Lee, G.I., Van Doren, S.R., and Walker, J.C. (2000). The FHA domain mediates phosphoprotein interactions. Journal of cell science 113 Pt 23, 4143-4149.
Li, L.C., Varghese, Z., Moorhead, J.F., Lee, C.T., Chen, J.B., and Ruan, X.Z. (2013). Cross-talk between TLR4-MyD88-NF-kappaB and SCAP-SREBP2 pathways mediates macrophage foam cell formation. American journal of physiology. Heart and circulatory physiology 304, H874-884.
Liang, F., Huang, N., Wang, B., and Chen, H. (2002a). [Assessment of the role of TLR-4 in shear-stress-induced IL-8 gene transcription activation in vascular endothelial cells by gene mutation and gene transfection technology]. Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 19, 667-672.
Liang, F., Huang, N., Wang, B., Chen, H., and Wu, L. (2002b). Shear stress induces interleukin-8 mRNA expression and transcriptional activation in human vascular endothelial cells. Chinese medical journal 115, 1838-1842.
Lin, J., Shou, X., Mao, X., Dong, J., Mohabeer, N., Kushwaha, K.K., Wang, L., Su, Y., Fang, H., and Li, D. (2013). Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability? PloS one 8, e62148.
Lin, K.M., Hu, W., Troutman, T.D., Jennings, M., Brewer, T., Li, X., Nanda, S., Cohen, P., Thomas, J.A., and Pasare, C. (2014). IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America 111, 775-780.
Little, P.J., Chait, A., and Bolbik, A. (2011). Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis. Pharmacol Therapeut 131, 255-268.
Liu, Y., Chen, B.P., Lu, M., Zhu, Y., Stemerman, M.B., Chien, S., and Shyy, J.Y. (2002). Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arteriosclerosis, thrombosis, and vascular biology 22, 76-81.
Lu, B., Wang, H., Andersson, U., and Tracey, K.J. (2013). Regulation of HMGB1 release by inflammasomes. Protein & cell 4, 163-167.
Lusis, A.J. (2000). Atherosclerosis. Nature 407, 233-241.
Luyendyk, J.P., Piper, J.D., Tencati, M., Reddy, K.V., Holscher, T., Zhang, R., Luchoomun, J., Chen, X., Min, W., Kunsch, C., et al. (2007). A novel class of antioxidants inhibit LPS induction of tissue factor by selective inhibition of the activation of ASK1 and MAP kinases. Arteriosclerosis, thrombosis, and vascular biology 27, 1857-1863.
Mahajan, A., Yuan, C., Lee, H., Chen, E.S., Wu, P.Y., and Tsai, M.D. (2008). Structure and function of the phosphothreonine-specific FHA domain. Science signaling 1, re12.
Mai, J., Virtue, A., Shen, J., Wang, H., and Yang, X.F. (2013). An evolving new paradigm: endothelial cells--conditional innate immune cells. Journal of hematology & oncology 6, 61.
Maiuri, M.C., Grassia, G., Platt, A.M., Carnuccio, R., Ialenti, A., and Maffia, P. (2013). Macrophage autophagy in atherosclerosis. Mediators of inflammation 2013, 584715.
Maltez, V.I., Tubbs, A.L., Cook, K.D., Aachoui, Y., Falcone, E.L., Holland, S.M., Whitmire, J.K., and Miao, E.A. (2015). Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium. Immunity 43, 987-997.
Mantovani, A., Bussolino, F., and Dejana, E. (1992). Cytokine regulation of endothelial cell function. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 6, 2591-2599.
Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular cell 10, 417-426.
Martins, J.D., Liberal, J., Silva, A., Ferreira, I., Neves, B.M., and Cruz, M.T. (2015). Autophagy and inflammasome interplay. DNA and cell biology 34, 274-281.
Matsumura, T., Semba, K., Azuma, S., Ikawa, S., Gohda, J., Akiyama, T., and Inoue, J. (2004). TIFAB inhibits TIFA, TRAF-interacting protein with a forkhead-associated domain. Biochemical and biophysical research communications 317, 230-234.
Mizushima, N. (2007). Autophagy: process and function. Genes & development 21, 2861-2873.
Moore, K.J., Sheedy, F.J., and Fisher, E.A. (2013). Macrophages in atherosclerosis: a dynamic balance. Nature reviews. Immunology 13, 709-721.
Nageh, M.F., Sandberg, E.T., Marotti, K.R., Lin, A.H., Melchior, E.P., Bullard, D.C., and Beaudet, A.L. (1997). Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arteriosclerosis, thrombosis, and vascular biology 17, 1517-1520.
Nedeljkovic, Z.S., Gokce, N., and Loscalzo, J. (2003). Mechanisms of oxidative stress and vascular dysfunction. Postgraduate medical journal 79, 195-199; quiz 198-200.
Netea, M.G., Ferwerda, G., de Jong, D.J., Jansen, T., Jacobs, L., Kramer, M., Naber, T.H., Drenth, J.P., Girardin, S.E., Kullberg, B.J., et al. (2005). Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. Journal of immunology 174, 6518-6523.
Perrotta, I., and Aquila, S. (2015). The role of oxidative stress and autophagy in atherosclerosis. Oxidative medicine and cellular longevity 2015, 130315.
Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., and Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell death and differentiation 14, 1583-1589.
Pirillo, A., Norata, G.D., and Catapano, A.L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators of inflammation 2013, 152786.
Razani, B., Feng, C., Coleman, T., Emanuel, R., Wen, H., Hwang, S., Ting, J.P., Virgin, H.W., Kastan, M.B., and Semenkovich, C.F. (2012). Autophagy links inflammasomes to atherosclerotic progression. Cell metabolism 15, 534-544.
Richards, N., Schaner, P., Diaz, A., Stuckey, J., Shelden, E., Wadhwa, A., and Gumucio, D.L. (2001). Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. The Journal of biological chemistry 276, 39320-39329.
Schachinger, V., and Zeiher, A.M. (2000). Atherosclerosis-associated endothelial dysfunction. Zeitschrift fur Kardiologie 89 Suppl 9, IX/70-74.
Schrijvers, D.M., De Meyer, G.R., Herman, A.G., and Martinet, W. (2007). Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovascular research 73, 470-480.
Schrijvers, D.M., De Meyer, G.R., Kockx, M.M., Herman, A.G., and Martinet, W. (2005). Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 25, 1256-1261.
Shao, B.Z., Han, B.Z., Zeng, Y.X., Su, D.F., and Liu, C. (2016). The roles of macrophage autophagy in atherosclerosis. Acta pharmacologica Sinica 37, 150-156.
Shen, W., Chang, A., Wang, J., Zhou, W., Gao, R., Li, J., Xu, Y., Luo, X., Xiang, R., Luo, N., et al. (2015). TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer. Oncogenesis 4, e173.
Shyy, J.Y. (2001). Mechanotransduction in endothelial responses to shear stress: review of work in Dr. Chien''s laboratory. Biorheology 38, 109-117.
Simon, F., and Fernandez, R. (2009). Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. Journal of hypertension 27, 1202-1216.
Stewart, C.R., Stuart, L.M., Wilkinson, K., van Gils, J.M., Deng, J., Halle, A., Rayner, K.J., Boyer, L., Zhong, R., Frazier, W.A., et al. (2010). CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature immunology 11, 155-161.
Sun, Z., Hsiao, J., Fay, D.S., and Stern, D.F. (1998). Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272-274.
Szabo, C., and Goldstein, B. (2011). Endothelial dysfunction as predictor of mortality in sepsis. Critical care medicine 39, 878-879.
Takabe, W., Jen, N., Ai, L., Hamilton, R., Wang, S., Holmes, K., Dharbandi, F., Khalsa, B., Bressler, S., Barr, M.L., et al. (2011). Oscillatory shear stress induces mitochondrial superoxide production: implication of NADPH oxidase and c-Jun NH2-terminal kinase signaling. Antioxidants & redox signaling 15, 1379-1388.
Takatsuna, H., Kato, H., Gohda, J., Akiyama, T., Moriya, A., Okamoto, Y., Yamagata, Y., Otsuka, M., Umezawa, K., Semba, K., et al. (2003). Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling. The Journal of biological chemistry 278, 12144-12150.
Talukder, M.A., Johnson, W.M., Varadharaj, S., Lian, J., Kearns, P.N., El-Mahdy, M.A., Liu, X., and Zweier, J.L. (2011). Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. American journal of physiology. Heart and circulatory physiology 300, H388-396.
Tsai, M.D. (2002). FHA: a signal transduction domain with diverse specificity and function. Structure 10, 887-888.
van Hinsbergh, V.W. (2012). Endothelium--role in regulation of coagulation and inflammation. Seminars in immunopathology 34, 93-106.
Vanhoutte, P.M. (1997a). Endothelial dysfunction and atherosclerosis. European heart journal 18 Suppl E, E19-29.
Vanhoutte, P.M. (1997b). [Endothelial dysfunction and atherosclerosis]. Archives des maladies du coeur et des vaisseaux 90 Spec No 6, 9-19.
Victor, V.M., Rocha, M., Sola, E., Banuls, C., Garcia-Malpartida, K., and Hernandez-Mijares, A. (2009). Oxidative stress, endothelial dysfunction and atherosclerosis. Current pharmaceutical design 15, 2988-3002.
Weng, J.H., Hsieh, Y.C., Huang, C.C., Wei, T.Y., Lim, L.H., Chen, Y.H., Ho, M.R., Wang, I., Huang, K.F., Chen, C.J., et al. (2015). Uncovering the Mechanism of Forkhead-Associated Domain-Mediated TIFA Oligomerization That Plays a Central Role in Immune Responses. Biochemistry 54, 6219-6229.
Wu, H. (2013). Higher-order assemblies in a new paradigm of signal transduction. Cell 153, 287-292.
Wu, W., Xiao, H., Laguna-Fernandez, A., Villarreal, G., Jr., Wang, K.C., Geary, G.G., Zhang, Y., Wang, W.C., Huang, H.D., Zhou, J., et al. (2011). Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a. Circulation 124, 633-641.
Xiao, H., Lu, M., Lin, T.Y., Chen, Z., Chen, G., Wang, W.C., Marin, T., Shentu, T.P., Wen, L., Gongol, B., et al. (2013). Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128, 632-642.
Yang, C.M., Luo, S.F., Hsieh, H.L., Chi, P.L., Lin, C.C., Wu, C.C., and Hsiao, L.D. (2010). Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: involvement of ERK, JNK, AP-1, and NF-kappaB. Journal of cellular physiology 224, 516-526.
Yang, W.L., Wang, J., Chan, C.H., Lee, S.W., Campos, A.D., Lamothe, B., Hur, L., Grabiner, B.C., Lin, X., Darnay, B.G., et al. (2009). The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134-1138.
Yu, J.W., Wu, J., Zhang, Z., Datta, P., Ibrahimi, I., Taniguchi, S., Sagara, J., Fernandes-Alnemri, T., and Alnemri, E.S. (2006). Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell death and differentiation 13, 236-249.
Yurdagul, A., Jr., Green, J., Albert, P., McInnis, M.C., Mazar, A.P., and Orr, A.W. (2014). alpha5beta1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 34, 1362-1373.
Zakynthinos, E., and Pappa, N. (2009). Inflammatory biomarkers in coronary artery disease. Journal of cardiology 53, 317-333.
Zhang, J., Wang, Z., Zuo, G., Li, B., Zhang, J., Tian, N., and Chen, S. (2013). Low shear stress induces human vascular endothelial cell apoptosis by activating Akt signal and increasing reactive oxygen species. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 33, 313-317.
Zhang, Y., Liu, G., Dull, R.O., Schwartz, D.E., and Hu, G. (2014). Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation. American journal of physiology. Lung cellular and molecular physiology 307, L173-185.
Zhou, R., Yazdi, A.S., Menu, P., and Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225.
Zhu, C.H., Ying, D.J., Mi, J.H., Zhu, X.H., Sun, J.S., and Cui, X.P. (2004). Low shear stress regulates monocyte adhesion to oxidized lipid-induced endothelial cells via an IkappaBalpha dependent pathway. Biorheology 41, 127-137.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔