|
1.Nielsen, S., et al., Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(24): p. 11663-11667. 2.Pisitkun, T., et al., Akt and ERK1/2 pathways are components of the vasopressin signaling network in rat native IMCD. American Journal of Physiology - Renal Physiology, 2008. 295(4): p. F1030-F1043. 3.Star, R.A., et al., Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. Journal of Clinical Investigation, 1988. 81(6): p. 1879-1888. 4.Katsura, T., et al., Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. American Journal of Physiology - Renal Physiology, 1997. 272(6): p. F817-F822. 5.Fushimi, K., S. Sasaki, and F. Marumo, Phosphorylation of Serine 256 Is Required for cAMP-dependent Regulatory Exocytosis of the Aquaporin-2 Water Channel. Journal of Biological Chemistry, 1997. 272(23): p. 14800-14804. 6.Xie, L., et al., Quantitative analysis of aquaporin-2 phosphorylation. American Journal of Physiology - Renal Physiology, 2010. 298(4): p. F1018-F1023. 7.Lu, H.J., et al., The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. American Journal of Physiology - Renal Physiology, 2008. 295(1): p. F290-F294. 8.Hoffert, J.D., et al., Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. American Journal of Physiology - Renal Physiology, 2007. 292(2): p. F691-F700. 9.Hoffert, J.D., et al., Vasopressin-stimulated Increase in Phosphorylation at Ser(269) Potentiates Plasma Membrane Retention of Aquaporin-2. The Journal of Biological Chemistry, 2008. 283(36): p. 24617-24627. 10.Moeller, H.B., M.A. Knepper, and R.A. Fenton, Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney international, 2009. 75(3): p. 295-303. 11.Moeller, H.B., et al., Phosphorylation of aquaporin-2 regulates its endocytosis and protein–protein interactions. Proceedings of the National Academy of Sciences, 2010. 107(1): p. 424-429. 12.Chetkovich, D.M., et al., Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors. J Neurosci, 2002. 22(14): p. 5791-6. 13.Cao, T.T., et al., A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature, 1999. 401(6750): p. 286-90. 14.Cohen, N.A., et al., Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron, 1996. 17(4): p. 759-67. 15.Noda, Y., et al., Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Letters, 2004. 568(1–3): p. 139-145. 16.Brown, B.L., M. Hadley, and R. Page, Heterologous high-level E. coli expression, purification and biophysical characterization of the spine-associated RapGAP (SPAR) PDZ domain. Protein Expr Purif, 2008. 62(1): p. 9-14. 17.Sali, A. and T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol, 1993. 234(3): p. 779-815. 18.Karthikeyan, S., T. Leung, and J.A.A. Ladias, Structural Determinants of the Na+/H+Exchanger Regulatory Factor Interaction with the β2Adrenergic and Platelet-derived Growth Factor Receptors. Journal of Biological Chemistry, 2002. 277(21): p. 18973-18978. 19.London, N., et al., Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res, 2011. 39(Web Server issue): p. W249-53. 20.Kaminski, G.A., et al., Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. The Journal of Physical Chemistry B, 2001. 105(28): p. 6474-6487. 21.Laskowski, R.A., et al., PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993. 26(2): p. 283-291. 22.Biasini, M., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014. 42(W1): p. W252-W258. 23.Kumar, T.A., CFSSP: Chou and Fasman Secondary Structure Prediction server. Wide Spectrum, 2013. 1(9): p. 15-19. 24.Jemth, P. and S. Gianni, PDZ Domains: Folding and Binding. Biochemistry, 2007. 46(30): p. 8701-8708. 25.Novak, K.A.P., N. Fujii, and R.K. Guy, Investigation of the PDZ domain ligand binding site using chemically modified peptides. Bioorganic & Medicinal Chemistry Letters, 2002. 12(17): p. 2471-2474. 26.Saro, D., et al., Thermodynamic Analysis of a Hydrophobic Binding Site: Probing the PDZ Domain with Nonproteinogenic Peptide Ligands. Organic Letters, 2004. 6(20): p. 3429-3432. 27.Doyle, D.A., et al., Crystal Structures of a Complexed and Peptide-Free Membrane Protein–Binding Domain: Molecular Basis of Peptide Recognition by PDZ. Cell, 1996. 85(7): p. 1067-1076. 28.Hoffert, J.D., et al., Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A, 2006. 103(18): p. 7159-64. 29.Nourry, C., S.G. Grant, and J.P. Borg, PDZ domain proteins: plug and play! Sci STKE, 2003. 2003(179): p. Re7.
|