跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:屠智宏
研究生(外文):Chih-Hung Tu
論文名稱:B28號藥水層萃取物改善倉鼠因高油高膽固醇飲食引起之非酒精性脂肪肝炎
論文名稱(外文):Water-soluble fraction of Herb-B28 ameliorates nonalcoholic steatohepatitis (NASH) in high fat/high cholesterol diet-fed hamsters
指導教授:呂紹俊呂紹俊引用關係
口試委員:陳惠玲蔡維人王沛然
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:非酒精性脂肪肝非酒精性脂肪肝炎膽固醇中草藥陰電性低密度脂蛋白 (LDL(-))IL-1β
外文關鍵詞:Chinese herbal medicineCholesterolElectronegative LDL (LDL(-))NAFLDNASHNeutrophilIL-1β
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非酒精性脂肪肝 (Nonalcoholic fatty liver disease, NAFLD) 是全球最常見的非病毒性慢性肝病,其病程由單純的肝細胞脂肪油滴堆積,到嚴重的非酒精性脂肪肝炎 (Nonalcoholic steatohepatitis, NASH)、肝纖維化甚至到肝硬化。至今仍少有藥物可以治療NASH,傳統中草藥有許多具有保肝作用的藥材,其中可能具有減緩或是治療NASH的功效。實驗室學長姐們經過多年的實驗篩選,發現中藥材B28號藥可以改善倉鼠因高油高膽固醇飼料引起之NASH,因此我的實驗目的是利用動物實驗探討B28號藥的有效成分是在水層或是有機層。
首先在實驗I,我將B28號藥依序與正己烷、乙酸乙酯及正丁醇進行萃取後取得水層萃取物,並將倉鼠分成4組,為HFC、HFC+B28、HFC+W-a及HFC+W-na,皆餵食含0.5% 膽固醇之高油脂飼料,每天分別灌食蒸餾水、B28號藥、經滅菌之水萃物 (W-a) 或未經滅菌之水萃物 (W-na) ,為期6週。結果顯示倉鼠灌食B28號藥或是水萃物,不論滅菌與否,血漿、肝臟膽固醇以及AST、ALT活性都有下降的趨勢,膠體過濾法 (Gel filtration) 分析顯示灌食B28號藥或水萃物可減少LDL-C,肝臟病理切片分析發現HFC+B28、HFC+W-a及HFC+W-na三組動物的發炎反應以及collagen堆積情形都比HFC組來的減輕,嗜中性白血球浸潤也較輕微,顯示B28號藥及其水萃物的功效並不受到高溫高壓處理而影響。
為了進一步確定B28號藥有效成分位在哪個分層,我們擴大實驗規模將倉鼠分成5組進行實驗II,每組6~9隻動物,分別為HFC、HFC+B28、HFC+W、HFC+3x W及HFC+EA,本次實驗經詢問專業意見後將萃取方式改為B28號藥只以乙酸乙酯進行分配萃取,得到水層以及乙酸乙酯層萃取物。五組倉鼠同樣餵食0.5% 膽固醇高油脂飼料並且每日分別灌食蒸餾水、B28號藥、B28號藥水萃物 (W) 、3倍B28號藥水萃物 (3x W) 以及B28號藥乙酸乙酯萃取物 (EA),持續6週。HFC+B28與HFC+3x W兩組的血漿、肝臟膽固醇以及AST活性顯著低於HFC組,經超高速離心分離脂蛋白,HFC+B28與HFC+3x W兩組的LDL-C顯著低於HFC組,觀察肝臟病理切片,HFC+B28、HFC+3x W兩組動物的發炎及collagen堆積情形都比HFC組來的輕微,嗜中性白血球浸潤及IL-1β表現也獲得改善,代表B28號藥與3倍劑量的水萃物能夠減緩NASH以及肝纖維化,然而HFC+W及HFC+EA兩組並沒有出現上述效果,顯示改變萃取方式後,水萃物需要使用3倍劑量才會與原藥材具有相近之保肝效果。儘管如此透過這兩次動物實驗可以確認水層含有B28號藥的有效成分,有機層萃取物的保肝效果還需要後續實驗確認。
實驗III為了分析B28號藥及其水萃物對於血液陰電性低密度脂蛋白 (LDL(-))含量的影響,將倉鼠分為3組,分別為HFC、HFC+3x B28及HFC+3x W,每組3隻動物,每天分別灌食蒸餾水,3倍B28號藥 (3x B28) 及3倍B28號藥水萃物 (3x W) ,持續灌食6週,前2週餵食chow diet,之後皆改為1 %膽固醇高油脂飼料再餵食4週引起NASH,結果發現HFC+3x B28組的血漿膽固醇及LDL-C含量都顯著低於HFC組,同時LDL(-) 的百分比也顯著下降,而HFC+3x W組在血漿膽固醇、LDL膽固醇以及LDL(-) 的百分比相較於HFC組都有下降的趨勢。最後我們也發現B28號藥及其水萃物可以改善大鼠Kupffer cells因LDL(-) 刺激而分泌促發炎激素。未來若能精進萃取方式進而將B28號藥的有效成分自水層提取出來,對於發展減緩非酒精性脂肪肝炎之保健食品甚至是新藥開發將會有很大的幫助。


Nonalcoholic fatty liver disease (NAFLD) is one of the most common non-viral chronic liver disease worldwide. NAFLD has a histological spectrum ranging from simple steatosis, nonalcoholic steatohepatitis (NASH), to fibrosis and cirrhosis. However, there is little available therapy for NASH. Some Chinese herbal medicines (CHM) are believed to have liver-protective effects and our previous studies have identified a CHM B28 (B28) has protective effects against high fat/high cholesterol (HFC) diet-induced NAFLD and NASH in the golden Syrian hamster. The aim of this study is to test whether the water-soluble fraction of B28 can also exert protective effects against HFC diet-induced NASH in hamsters.
In animal study I, B28 was sequentially partitioned using solvents with different polarity, including hexane, ethyl acetate and butanol; and the water-soluble extracts were collected. Hamsters were separated into 4 groups. The control group was fed with HFC diets with 0.5% cholesterol and gavaged with distilled water for 6 weeks. The other 3 groups, designated as HFC+B28, HFC+W-a and HFC+W-na were also fed with the HFC diets and gavaged with B28、B28 water-soluble extracts (autoclaved) and B28 water-soluble extracts (non-autoclaved), respectively, for 6 weeks. The results show that B28 and its water-soluble extracts decreased plasma and liver total cholesterol levels and lowered plasma AST and ALT activities compared to the HFC group. Gel filtration analysis revealed that cholesterol levels in LDL fractions is lower in the HFC+B28, HFC+W-a and HFC+W-na groups than in the HFC group. Histopathological analyses of liver sections show that B28 and its water-soluble extracts can alleviate liver inflammation and fibrosis, and also prevent neutrophil infiltration induced by the HFC diet. These results suggest that the liver-protective effects of B28 and its water-soluble extracts are independent of the autoclave sterilization.
In animal study II the B28 was partitioned with ethyl acetate, and the water-soluble and ethyl acetate-soluble extracts were collected. Hamsters were assigned into 5 groups designated as HFC, HFC+B28, HFC+W, HFC+3x W and HFC+EA and all fed with HFC diets with 0.5% cholesterol and gavaged with distilled water, B28、B28 water-soluble extracts, B28 water-soluble extracts (triple-dose) and B28 ethyl acetate extracts, respectively, for 6 weeks. The results show that HFC+B28 and HFC+3x W significantly lowered levels of plasma and liver cholesterol and lowered AST activity compared to the HFC group. Gel filtration and ultracentrifugation analyses of lipoprotein profiles showed that HFC+B28 and HFC+3x W groups have significantly lower levels of cholesterol in LDL fractions. Histopathological analyses of liver sections revealed that HFC+B28 and HFC+3x W groups have minor inflammation and fibrosis state and less neutrophil infiltration compared to the HFC group. The HFC+W and HFC+EA groups have no such effects. These results demonstrate that it will require triple doses of water-soluble extracts to have protective effects against NASH when the partition procedures are changed. Still, our results of these two animal studies indicate that water-soluble extracts preserved the active compounds of B28.
In animal study III, hamsters were separated into 3 groups designated as HFC, HFC+3x B28 and HFC+3x W. They were gavaged with distilled water, B28 (triple-dose) and B28 water-soluble extracts (triple-dose), respectively, for 6 weeks. All 3 groups were treated with chow diets during the first 2 weeks than the diets were substituted with HFC diets with 1% cholesterol for another 4 weeks. B28 significantly lowered plasma cholesterol and LDL-C levels and decreased plasma LDL(-) contents. B28 water-soluble extracts lowered plasma cholesterol, LDL-C levels and LDL(-) contents to a lesser degree of B28. In vitro studies show that B28 and its water-soluble extracts lowered the LDL(-)-induced secretion of proinflammatory cytokines by rat Kupffer cells. In the future, we aim to obtain the active compounds from the water-soluble fraction of B28 by refining the partition procedures, and it will be of great help for new drug development against NASH.


口試委員審定書 I
誌謝 II
摘要 III
Abstract V
目錄 VIII
圖表目錄 X
第一章、緒論 1
第一節、文獻回顧 2
研究動機與實驗目的 13
第二章、材料與方法 15
第一節、實驗材料 16
第二節、動物實驗 17
第三節、細胞實驗 33
第四節、統計分析 34
第三章、實驗結果 35
第一節、中草藥萃取與有機層水層分離 36
第二節、雄性倉鼠動物實驗 36
第三節、細胞實驗 44
第四章、討論 45
第一節、動物實驗規劃 46
第二節、B28號藥及其水層萃取物對於降低血漿與肝臟膽固醇的效果 47
第三節、B28號藥及其水層萃取物可減緩NASH及Fiborsis發生 49
第四節、B28號藥及其水萃物可降低血液中LDL(-) 含量並減緩發炎反應 51
第五節、B28號藥及水層萃取物對於IL-1β基因表現的影響 52
第六節、未來展望 53
第五章、圖表 54
第六章、參考文獻 76


圖表目錄
Figure 1. Flow chart for the preparation of herb-B28 and its extracts 55
Figure 2. Daily food intake of the golden Syrian hamsters from animal study I and II 56
Figure 3. Daily food intake of the golden Syrian hamsters from animal study III 57
Figure 4. Growth curves of the golden Syrian hamsters from animal study I and II 58
Figure 5. Grow th curves of the golden Syrian hamsters from animal study III 59
Figure 6. Cholesterol contents in lipoprotein fractions from animal study I 60
Figure 7. Cholesterol contents in lipoprotein fractions from animal study II 61
Figure 8. Cholesterol contents in lipoprotein fractions from animal study III 62
Figure 9. Ion exchange chromatography 63
Figure 10. HE and Trichrome staining of liver sections from animal study I 64
Figure 11. HE and Trichrome staining of liver sections from animal study II 65
Figure 12. IHC staining of liver sections from animal study I 66
Figure 13. IHC staining of liver sections from animal study II 67
Figure 14. Relative hepatic mRNA levels of IL-1β from animal study II 68
Figure 15. Effects of herb-B28 and its extracts on TNF-α secretion by Kupffer cells 69
Table 1. Liver weight, plasma biochemistry analyse and liver TG and TC of the golden Syrian hamsters from animal study I 70
Table 2. Liver weight, plasma biochemistry analyse and liver TG and TC of the golden Syrian hamsters from animal study II 71
Table 3. Lipoprotein analysis of the golden Syrian hamsters from animal study II 72
Table 4. Liver weight, plasma total cholesterol and lipoprotein analysis of the golden Syrian hamsters from animal study III 73
Table 5. Levels of LDL(-) from animal study III 73
Table 6. The NASH grades from animal study I 74
Table 7. The NASH grades from animal study II 74
Table 8. The fibrosis grades from animal study I 75
Table 9. The fibrosis grades from animal study II 75


Alkhouri, N., Morris-Stiff, G., Campbell, C., Lopez, R., Tamimi, T. A., Yerian, L., Zein, N. N., and Feldstein, A. E. (2012). Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int 32, 297-302.
Anstee, Q. M., Targher, G., and Day, C. P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10, 330-344.
Assmann, G. and Gotto, A. M. (2004). HDL cholesterol and protective factors in atherosclerosis. Circulation 109, III-8 – III-14.
Avogaro, P., Bon, G. B., and Cazzolato, G. (1988). Presence of a modified low density lipoprotein in humans. Arterioscler Thromb Vasc Biol 8, 79-87.
Barter, P. (2005). The role of HDL-cholesterol in preventing atherosclerotic disease. Eur Heart J Suppl. 7, F4-F8
Bieghs, V., Verheyen, F., van Gorp, P. J., Hendrikx, T., Wouters, K., Lutjohann, D., Giibels, M. J., Febbraio, M., Binder, C. J., Hofker, M. H., and Shiri-Sverdlov, R. (2012). Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells. PloS One 7, e34378.
Brown, G. T., and Kleiner, D. E. (2015). Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism 65, 1080-1086.
Brown, J. M., and Yu, L. (2009). Opposing gatekeepers of apical sterol transport: Niemann-Pick C1-Like 1 (NPC1L1) and ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem 9, 18-29.
Carpino, G., Morini, S., Ginanni Corradini, S., Franchitto, A., Merli, M., Siciliano, M., Gentili, F., Onetti Muda, A., Berloco, P., Rossi, M., Attili, A. F., and Gaudio, E. (2005). Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis 37, 349-356.
Chan, H. C., Ke, L. Y., Chu, C. S., Lee, A. S., Shen, M. Y., Cruz, M. A., Hsu, J. F., Cheng, K. H., Chan, H. C. B., Lu, J., Lai, W. T., Sawamura, T., Sheu, S. H., Yen, J. H., and Chen, C. H. (2013). Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood 122, 3632-3641.
Chang, E., Park, C. Y., and Park, S. W. (2013). Role of thiazolidinediones, insulin sensitizers, in non-alcoholic fatty liver disease. J Diabetes Investig 4, 517-524.
Chang, P. Y., Chen, Y. J., Chang, F. H., Lu, J., Huang, W. H., Yang, T. C., Lee, Y. T., Chang, S. F., Lu, S. C., and Chen, C. H. (2013). Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: a novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovasc Res 99, 137-145.
Cooper, A. D. (1997). Hepatic uptake of chylomicron remnants. J Lipid Res 38, 2173-2192.
Davies, M. J., Hawkins, C. L., Pattison, D. I., and Rees, M. D. (2008). Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 10, 1199-1234.
Day, C. P., and James, O. F. W. (1998). Steatohepatitis : a tale of two hits ? Gastroenterology 114, 842-845.
Dongiovanni, P., Petta, S., Mannisto, V., Mancina, R. M., Pipitone, R., Karja, V., Maggioni, M., Kakela, P., Wiklund, O., Mozzi, E., Grimaudo, S., Kaminska, D., Rametta, R.,. Craxi, A., Fargion, S., Nobili, V., Romeo, S., Pihlajamaki, J., and Valenti, L. (2015). Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol 63, 705-712.
Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D., and Parks, E. J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115, 1343-1351.
Esposito, K., Pontillo, A., Ciotola, M., Di Palo, C., Grella, E., Nicoletti, G., and Giugliano, D. (2002). Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab 87, 3564-3566.
Farrell, G. C., Wong, V. W., and Chitturi, S. (2013). NAFLD in Asia--as common and important as in the West. Nat Rev Gastroenterol Hepatol 10, 307-318.
Gadd, V. L., Skoien, R., Powell, E. E., Fagan, K. J., Winterford, C., Horsfall, L., Ivvine, K., and Clouston, A. D. (2014). The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59, 1393-1405.
George, J., Pera, N., Phung, N., Leclercq, I., Yun Hou, J., and Farrell, G. (2003). Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol 39, 756-764.
Golomb, B. A., and Evans, M. A. (2008). Statin adverse effects : a review of the literature and evidance for a mitochondrial mechanism. Am J Cardiovasc Drugs 8, 373-418.
Goulinet, S., and Chapman, M. J. (1993). Plasma lipoproteins in the Golden Syrian hamster (Mesocricetus auratus): heterogeneity of apoB- and apoA-I-contain ing particles. J Lipid Res 34, 943-959.
Guillemot-Legris, O., Mutemberezi, V., Cani, P. D., and Muccioli, G. G. (2016). Obesity is associated with changes in oxysterol metabolism and levels in mice liver, hypothalamus, adipose tissue and plasma. Sci Rep 6, 1-11.
Hardy, T., Oakley, F., Anstee, Q. M., and Day, C. P. (2016). Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol 11, 451-496
Haukeland, J. W., Konopski, Z., Eggesbo, H. B., von Volkmann, H. L., Raschpichler, G., Bjoro, K., Haaland, T., Loberg, E. M., and Birkeland, K. (2009). Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scand J Gastroenterol 44, 853-860.
Hazen, S. L., Zhang, R., Shen, Z., Wu, W., Podrez, E. A., MacPherson, J. C., Schmitt, D., Mitra, S. N., Mukhopadhyay, C., Chen, Y., Cohen, P. A., Hoff, H. F., and Abu-Soud, H. M. (1999). Formation of nitric oxidase-derived oxidants by myeloperoxidase in monocytes : pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo. Circ Res 85, 950-958.
Horton, J. D., Cuthbert, J. A., and Spady, D. K. (1995). Regulation of hepatic 7α-hydroxylase expression and response to dietary cholesterol in the rat and hamster. J Biol Chem 270, 5381-5387.
Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-α : direct role in obesity-linked insulin resistance. Science 259, 87-91.
Hsu, C. S., and Kao, J. H. (2012). Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. J Formos Med Assoc 111, 527-535.
Ibusuki, R., Uto, H., Arima, S., Mawatari, S., Setoguchi, Y., Iwashita, Y., Hashimoto, S., Maeda, T., Tanoue, S., Kanmura, S., Oketani, M., Ido, A., and Tsubouchi, H. (2013). Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int 33, 1549-1556.
Ioannou, G. N., Haigh, W. G., Thorning, D., and Savard, C. (2013). Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res 54, 1326-1334.
Ioannou, G. N., Morrow, O. B., Connole, M. L., and Lee, S. P. (2009). Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 50, 175-184.
Ivanova, E. A., Bobryshev, Y. V., and Orekhov, A. N. (2015). LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag 11, 525-532.
Jager, J., Gremeaux, T., Cormont, M., Marchand-Brustel, Y. L., and Tanti, J. F (2007). Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insuin receptor substrate-1 expression. Endocrinology 148, 241-251.
Jung, U. J., and Choi, M. S. (2014). Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15, 6184-6223.
Karmakar, M., Katsnelson, M., Malak, H. A., Greene, N. G., Howell, S. J., Hise, A. G., Camilli, A., Kadioglu, A., Dubyak, G. R., and Pearlman, E. (2015). Neutrophil IL-1beta processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol 194, 1763-1775.
Ke, L. Y., Engler, D. A., Lu, J., Matsunami, R. K., Chan, H. C., Wang, G. J., Yang, C. Y., Chang, J. G., and Chen, C. H. (2011). Chemical composition-oriented receptor selectivity of L5, a naturally occuring atherogenic low-density lipoprotein. Pure Appl Chem 83, 1731-1740.
Kern, P. A., Di Gregorio, G. B., Lu, T., Rassouli, N., and Ranganathan, G. (2003). Adiponectin expression from human adipose tissue. Diabetes 52, 1779-1785.
Kim, D., Kim, W. R., Kim, H. J., and Therneau, T. M. (2013). Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 57, 1357-1365.
Klebanoff, S. J. (2005). Myeloperoxidase: friend and foe. J Leukoc Biol 77, 598-625.
Kleiner, D. E., Brunt, E. M., Van Natta, M., Behling, C., Contos, M. J., Cummings, O. W., Ferrell, L. D., Liu, Y. C., Torbenson, M. S., Unalp-Arida, A., Yeh, M., McCullough, A. J., and Sanyal, A. J., (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313-1321.
Lai, Y. S., Yang, T. C., Chang, P. Y., Chang, S. F., Ho, S. L., Chen, H. L., and Lu, S. C. (2016). Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. J Nutr Biochem 30, 44-52.
Leroux, A., Ferrere, G., Godie, V., Cailleux, F., Renoud, M. L., Gaudin, F., Naveau, S., Prevot, S., Makhzami, S., Perlemuter, G., and Cassard-Doulcier, A. M. (2012). Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol 57, 141-149.
Li, Y., Liu, L., Wang, B., Wang, J., and Chen, D. (2013). Metformin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Biomed Rep 1, 57-64.
Li, Z. Z., Berk, M., McIntyre, T. M., and Feldstein, A. E. (2009). Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 284, 5637-5644.
Lim, S. Y. (2013). Role of statins in coronary artery disease. Chonnam Med J 49, 1-6.
Lukas, N. W., Strieter, R. M., Chensue, S. W., Widmer, M., and Kunkel, S. L. (1995). TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol 154, 5411-5417.
Mazza, A., Fruci, B., Garinis, G. A., Giuliano, S., Malaguarnera, R., and Belfiore, A. (2012). The role of metformin in the management of NAFLD. Exp Diabetes Res 2012, 716404.
Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat Rev Immunol 1, 135-145.
Mello, A. P., da Silva, I. T., Abdalla, D. S., and Damasceno, N. R. (2011). Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215, 257-265.
Min, H. K., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., Kellum, J., Warnick, R., Contos, M. J., and Sanyal, A. J. (2012). Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 15, 665-674.
Musso, G., Cassader, M., and Gambino, R. (2011). Cholesterol-lowering therapy for the treatment of nonalcoholic fatty liver disease: an update. Curr Opin Lipidol 22, 489-496.
Ness, G. C., Holland, R. C., and Lopez, D. (2006). Selective compensatory induction of hepatic HMG-CoA reductase in response to inhibition of cholesterol absorption. Exp Biol Med 231, 559-565.
Oka, K., Kobayashi, K., Sullivan, M., Martinez, J., Teng, B. B., Ishimura-Oka, K., and Chan, L. (1997). Tissue-specific inhibition of apolipoprotein B mRNA editing in the liver by adenovirus-mediated transfer of a dominant negative mutant APOBEC-1 leads to increased low density lipoprotein in mice. J Biol Chem 272, 1456-1460.
Osborne, J. C., Bronzert, T. J., and Brewer, H. B. (1977). Self-association of Apo-C-I from the human high density lipoprotein complex. J Biol Chem 252, 5756-5760.
Poli, G., Biasi, F., and Leonarduzzi, G. (2013). Oxysterols in the pathogenesis of major chronic diseases. Redox Biol 1, 125-130.
Porro, G. A., Lee, J. H., De Azavedo, J., Crandall, I., Whitehead, T., Tullis, E., Ganz, T., Liu, M., Slutsky, A. S., and Zhang, H. (2001). Direct and indirect bacterial killing functions of neutrophil defensins in lung explants. Am J Physiol Lung Cell Mol Physiol 281, 1240-1247.
Pramfalk, C., Parini, P., Gustafsson, U., Sahlin, S., and Eriksson, M. (2011). Effects of high-dose statin on the human hepatic expression of genes involved in carbohydrate and triglyceride metabolism. J Intern Med 269, 333-339.
Pulli, B., Ali, M., Iwamoto, Y., Zeller, M. W., Schob, S., Linnoila, J. J., and Chen, J. W. (2015). Myeloperoxidase-hepatocyte-stellate cell cross talk promotes hepatocyte injury and fibrosis in experimental nonalcoholic steatohepatitis. Antioxid Redox Signal. 23, 1255-1269.
Puri, P., Baillie, R. A., Wiest, M. M., Mirshahi, F., Choudhury, J., Cheung, O., Sargeant, C., Contos, M. J., and Sanyal, A. J. (2007). A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081-1090.
Ratziu, V., Charlotte, F., Bernhardt, C., Giral, P., Halbron, M., Lenaour, G., Hartmann-Heurtier, A., Bruckert, E., and Poynard, T. (2010). Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51, 445-453.
Rensen, S. S., Bieghs, V., Xanthoulea, S., Arfianti, E., Bakker, J. A., Shiri-Sverdlov, R., Hofker, M. H., Greve, J. W., and Buurman, W. A. (2012). Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PloS One 7, e52411.
Rensen, S. S., Slaats, Y., Nijhuis, J., Jans, A., Bieghs, V., Driessen, A., Malle, E., Greve, J. W., and Buurman, W. A . (2009). Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol 175, 1473-1482.
Rivera, C. A., Adegboyega, P., van Rooijen, N., Tagalicud, A., Allman, M., and Wallace, M. (2007). Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 47, 571-579.
Robertson, G., Leclercq, I., and Farrell, G. C. (2001). Nonalcoholic steatosis and steatohepatitis : cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 281, 1135-1139.
Sabio, G., Das, M., Mora, A., Zhang, A., Jun, J. Y., Ko, H. J., Barrett, E., Kim, J. K., and Davis, R. J. (2008). A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539-1543.
Sahoo, M., Ceballos-Olvera, I., del Barrio, L., and Re, F. (2011). Role of the inflammasome, IL-1beta, and IL-18 in bacterial infections. ScientificWorldJournal 11, 2037-2050.
Scapini, P., Lapinet-Vera, J. A., Gasperini, S., Calzetti, F., Bazzoni, F., and Cassatella, M. A. (2000). The neutrophil as a cellular source of chemokines. Immunol Rev 177, 195-203.
Senn, J. J., Klover, P. J., Nowak, I. A., Zimmers, T. A., Koniaris, L. G., Furlanetto, R. W., and Mooney, R. A. (2003). Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278, 13740-13746.
Strauss, R. S., Barlow, S. E., and Dietz, W. H. (2000). Prevalence of abnormal serum aminotransferase values in overweight and obese adolescents. J Pediatr 136, 727-733.
Takeshita, Y., Takamura, T., Honda, M., Kita, Y., Zen, Y., Kato, K., Misu, H., Ota, T., Nakamura, M., Yamada, K., Sunagozaka, H., Arai, K., Yamashita, T., Mizukoshita, T., Mizukoshi, E., and Kaneko, S. (2014). The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: a randomised controlled trial. Diabetologia 57, 878-890.
Talukdar, S., Oh da, Y., Bandyopadhyay, G., Li, D., Xu, J., McNelis, J., Lu, M., Li, P., Yan, Q., Zhu, Y., Ofrecio, J., Lin, M., Brenner, M. B., and Olefsky, J. M. (2012). Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18, 1407-1412.
Tan, H. W., Liu, X., Bi, X. P., Xing, S. S., Li, L., Gong, H. P., Zhong, M., Wang, Z. H., Zhang, Y., and Zhang, W. (2010). IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis 208, 350-357.
Tavares De Almeida, I., Cortez-Pinto, H., Fidalgo, G., Rodrigues, D., and Camilo, M. E. (2002). Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr 21, 219-223.
Teratani, T., Tomita, K., Suzuki, T., Oshikawa, T., Yokoyama, H., Shimamura, K., Tominaga, S., Hiroi, S., Irie, R., Okada, Y., Kurihara, C., Ebinuma, H., Saito, H., Hokari, R., Sugiyama, K., Kanai, T., Miura, S., and Hibi, T. (2012). A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142, 152-164.
Tilg, H. and Moschen, A. R. (2011). IL-1 cytokine family members and NAFLD : neglected in metabolic liver inflammation. J Hepatol 55, 960-962.
Tomita, K., Teratani, T., Suzuki, T., Shimizu, M., Sato, H., Narimatsu, K., Okada, Y., Kurihara, C., Irie, R., Yokoyama, H., Shimamura, K., Usui, S., Ebinuma, H., Saito, H., Watanabe, C., Komoto, S., Kawaguchi, A., Nagao, S., Sugiyama, K., Hokari, R., Kanai, T., Miura, S., and Hibi, T. (2014). Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59, 154-169.
Valasek, M. A., Repa, J. J., Quan, G., Dietschy, J. M., and Turley, S. D. (2008). Inhibiting intestinal NPC1L1 activity prevents diet-induced increase in biliary cholesterol in Golden Syrian hamsters. Am J Physiol Gastrointest Liver Physiol 295, 813-822.
Van Rooyen, D. M., Gan, L. T., Yeh, M. M., Haigh, W. G., Larter, C. Z., Ioannou, G., Teoh, N. C., and Farrell, G. C. (2013). Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol 59, 144-152.
Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T., Brickey, W. J., and Ting, J. P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12, 408-415.
Wigg, A. J., Roberts-Thomson, I. C., Dymock, R. B., McCarthy, P. J., Grose, R. H., and Cummins, A. G. (2001). The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumor necrosis factor-α in the pathogenesis of non-alcoholic steatohepatitis. Gut 48, 206-211.
Williams, C. D., Stengel, J., Asike, M. I., Torres, D. M., Shaw, J., Contreras, M., Landt, C. L., and Harrison, S. A. (2011). Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124-131.
Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P., and Halbwachs-Mecarelli, L. (2000). Neutrophils : molecules, functions and pathophysiological aspects. Lab Invest 80, 617-653.
Woollett, L. A., Kearney, D. M., and Spady, D. K. (1997) . Diet modification alters plasma HDL cholesterol concentrations but not the transport of HDL cholesteryl esters to the liver in the hamster. J Lipid Res 38, 2289-2302.
Wouters, K., van Gorp, P. J., Bieghs, V., Gijbels, M. J., Duimel, H., Lutjohann, D., Kerksiek, A., van Kruchten, R., Maeda, N., Staels, B., van Bilsen, M., Shiri-Sverdlov, R., and Hofker, M. H. (2008). Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48, 474-486.
Xie, C., Zhou, Z. S., Li, N., Bian, Y., Wang, Y. J., Wang, L. J., Li, B. L., and Song, B. L. (2012). Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J Lipid Res 53, 2092-2101.
Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B., and Kadowaki, T. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8, 1288-1295.
Yang, C. Y., Raya, J. L., Chen, H. H., Chen, C. H., Abe, Y., Pownall, H. J.,Taylor, A. A., and Smith, C. V. (2003). Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol 23, 1083-1090.
Zannis, V. I., Chroni, A., and Krieger, M. (2006). Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 84, 276-294.
黃繼漢, 黃曉暉, 陳志揚, 鄭青山, 孫瑞元 (2004) 藥理試驗中動物間和動物與人體間的等效劑量換算。中國藥理學會。
侯承 (2009) 我有脂肪肝---怎麼辦?台灣肝臟學術文教基金會刊第三十八期。
蘇慶豐 (2015) 非酒精性脂肪肝疾病的診斷與治療。家庭醫學與基層醫療第三十卷第九期。
黃騰慶 (2015) 非酒精性脂肪肝。家庭醫學與基層醫療第三十卷第十一期。
楊禮禪 (2011) 中草藥複方B預防二以基亞硝胺及高油脂高膽固醇飼料所造成的非酒精性脂肪肝炎與肝臟纖維化。國立台灣大學醫學院生化暨分生研究所碩士論文。
廖思采 (2013) B28號藥改善倉鼠因高脂高膽固醇飼料所引起的非酒精性脂肪肝炎涉及降低小腸與肝臟中的NPC1L1表現。國立台灣大學醫學院生化暨分生研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊