跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳聖安
研究生(外文):Samuel Sheng-An Chen
論文名稱:酵母菌種間之雜種優勢:溫度耐受範圍的擴展
論文名稱(外文):Extended range of temperature tolerance as a form of hybrid vigor in Saccharomyces yeast
指導教授:呂俊毅呂俊毅引用關係
指導教授(外文):Jun-Yi Leu
口試委員:王忠信蔡懷寬
口試委員(外文):John WangHuai-Kuang Tsai
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:基因體與系統生物學學位學程
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:55
中文關鍵詞:雜種雜種優勢酵母菌釀酒酵母溫度溫度耐受範圍
外文關鍵詞:HybridHybrid vigorHeterosisyeastSaccharomyces yeasttemperaturetemperature tolerance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
雜種優勢(Hybrid vigor)是指不同物種間的雜交種(Hybrid)之生物特性優越於其父母。 雜種優勢的現象在植物和動物間相當普遍,然而,目前尚未有研究能徹底地解釋雜種優勢的分子機制。在此研究中,我們利用Saccharomyces cerevisiae及Saccharomyces bayanus此二種酵母菌來探討其雜種優勢。儘管這兩個物種已經由演化過程適應了不同的溫度範圍,但相較於親代,雜交種卻有更寬廣的溫度耐受範圍。溫度耐受性的擴展可被視為雜種優勢的一種。我們推測在不同的溫度下,雜交種擁有與親代不同的轉錄組(transcriptome),而部分基因在雜交種裡的獨特表現可能是造成溫度耐受範圍擴展的原因。藉由DNA晶片(microarray),我們比較雜交種與親代在不同溫度下的轉錄組。在高溫下,參與呼吸作用及粒線體轉譯機制的基因有著獨特的雜交種表現量;低溫下,與轉譯機制相關的基因有獨特的表現量。進一步的分析讓我們發現,在雜交種中有獨特表現量的基因,其大部分在親代的表現量已經有所差異,而且兩個親代之表現量差異性多為trans regulatory divergence所造成的。然而,雜交種獨特的基因表現與溫度耐受性的擴展間之連結需要進一步的實驗證明。

Hybrid vigor refers to the outperformance of intra- or interspecific hybrids compared to both parents in biological qualities, and is widespread in plants and animals. However, the molecular bases of hybrid vigor remain widely unexplored. Here, we studied the interspecific hybrid between mesophilic yeast Saccharomyces cerevisiae and cryophilic yeast Saccharomyces bayanus. While the two species have diverged in their fitness at distinct temperatures, the hybrid performed equally well as the better parent at two ends of the temperature spectrum. Furthermore, hybrid vigor was displayed as an extended range of temperature tolerance when compared to the parents. We speculated the novel gene expression patterns of hybrid at different temperatures were responsible for the extended temperature tolerance. Transcriptome comparison between hybrid and the two parents demonstrated that the hybrid displayed different sets of novel expression patterns at distinct temperatures: hybrid-specific expressions were enriched in genes relating to respiration and mitochondrial translation at high temperature, and in genes relating to translational machinery at low temperature. Majority of the hybrid-specific expressions belonged to genes with conditional trans-regulatory divergence between the parental species, suggesting the divergence in temperature sensing of the parents gave rise to novel expression of hybrid. Further evidence is required to demonstrate the importance of hybrid-specific expression in the hybrid vigor phenomena described. Our results provided insights on the novel regulatory changes upon hybridization of two different species, and hints to establish the connection between these regulatory changes to the hybrid vigor phenotypes.

口試委員會審定書i
誌謝ii
中文摘要iii
英文摘要iv~v
目錄 vi~vii
Chapter 1. Introduction 1~4
Chapter 2. Results 4~15
Chapter 3. Discussion 16~18
Chapter 4. Materials and Methods 18~23
Chapter 5. References 24~27
Figures 28~40
Supplementary figures 41~48

1.Chen, Z. Jeffrey. "Molecular mechanisms of polyploidy and hybrid vigor."Trends in plant science 15.2 (2010): 57-71.

2.Shull, George Harrison. "What is" heterosis"?." Genetics 33.5 (1948): 439.

3.Crow, James F. "90 years ago: the beginning of hybrid maize." Genetics 148.3 (1998): 923-928.

4.Riedelsheimer, Christian, et al. "Genomic and metabolic prediction of complex heterotic traits in hybrid maize." Nature genetics 44.2 (2012): 217-220.

5.Shull, George H. "The composition of a field of maize." Journal of Heredity 1 (1908): 296-301.

6.East, Edward M. "Heterosis." Genetics 21.4 (1936): 375.

7.Xiao, Jinhua, et al. "Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers." Genetics 140.2 (1995): 745-754.

8.Li, Zhi-Kang, et al. "Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield."Genetics 158.4 (2001): 1737-1753.

9.Schwartz, Drew. "Single gene heterosis for alcohol dehydrogenase in maize: the nature of the subunit interaction." Theoretical and Applied Genetics 43.3-4 (1973): 117-120.

10.Krieger, Uri, Zachary B. Lippman, and Dani Zamir. "The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato." Nature genetics 42.5 (2010): 459-463.

11.Steinmetz, Lars M., et al. "Dissecting the architecture of a quantitative trait locus in yeast." Nature 416.6878 (2002): 326-33

12.Birchler, James A., Donald L. Auger, and Nicole C. Riddle. "In search of the molecular basis of heterosis." The Plant Cell 15.10 (2003): 2236-2239.

13.Wang, Jianlin, et al. "Genomewide nonadditive gene regulation in Arabidopsis allotetraploids." Genetics 172.1 (2006): 507-517.

14.Fujimoto, Ryo, et al. "Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity." Proceedings of the National Academy of Sciences 109.18 (2012): 7109-7114.

15.Tirosh, I., Reikhav, S., Levy, A. A., & Barkai, N. (2009). A yeast hybrid provides insight into the evolution of gene expression regulation. Science,324(5927), 659-662.

16.Shi, X., Ng, D. W., Zhang, C., Comai, L., Ye, W., & Chen, Z. J. (2012). Cis-and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nature communications, 3, 950.

17.Borneman, Anthony R., and Isak S. Pretorius. "Genomic insights into the Saccharomyces sensu stricto complex." Genetics 199.2 (2015): 281-291.

18.Barnett, J. A. "The taxonomy of the genus Saccharomyces meyen ex Reess: a short review for non‐taxonomists." Yeast 8.1 (1992): 1-23.

19.Petersen, Randi Fns, Torsten Nilsson-Tillgren, and Jure Piškur. "Karyotypes of Saccharomyces sensu lato species." International Journal of Systematic and Evolutionary Microbiology 49.4 (1999): 1925-1931.

20.Lee, Hsin-Yi, et al. "Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species." Cell 135.6 (2008): 1065-1073.

21.Naumov, Gennadi I., et al. "Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: electrophoretic karyotypes." Yeast 8.8 (1992): 599-612.

22.Kishimoto, Munekazu. "Fermentation characteristics of hybrids between the cryophilic wine yeast Saccharomyces bayanus and the mesophilic wine yeast Saccharomyces cerevisiae." Journal of fermentation and bioengineering 77.4 (1994): 432-435.
23.Combina, Mariana, et al. "Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions." International journal of food microbiology 157.3 (2012): 340-345.

24.Masneuf, Isabelle, et al. "New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains." Applied and Environmental Microbiology 64.10 (1998): 3887-3892.

25.Eden, E., Navon, R., Steinfeld, I., Lipson, D., & Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists.BMC bioinformatics, 10(1), 1.

26.Al-Fageeh, Mohamed B., and C. Mark Smales. "Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems." Biochemical Journal 397.2 (2006): 247-259.

27.Ferguson, L. R., & Von Borstel, R. C. (1992). Induction of the cytoplasmic ‘petite’mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 265(1), 103-148.

28.Wittkopp, Patricia J., Belinda K. Haerum, and Andrew G. Clark. "Evolutionary changes in cis and trans gene regulation." Nature 430.6995 (2004): 85-88.

29.Wray, G. A., Hahn, M. W., Abouheif, E., Balhoff, J. P., Pizer, M., Rockman, M. V., & Romano, L. A. (2003). The evolution of transcriptional regulation in eukaryotes. Molecular biology and evolution, 20(9), 1377-1419.

30.Rodrigues‐Pousada, Claudina, Regina A. Menezes, and Catarina Pimentel. "The Yap family and its role in stress response." Yeast 27.5 (2010): 245-258.

31.Mendizabal, I., Rios, G., Mulet, J. M., Serrano, R., & de Larrinoa, I. F. (1998). Yeast putative transcription factors involved in salt tolerance. FEBS letters,425(2), 323-328.

32.Groszmann, Michael, et al. "Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor." Proceedings of the National Academy of Sciences 108.6 (2011): 2617-2622.

33.Chen, Z. Jeffrey, Luca Comai, and Craig S. Pikaard. "Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids."Proceedings of the National Academy of Sciences 95.25 (1998): 14891-14896.

34.Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L & Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching.Nucleic acids research, gkp335.

35.Teixeira, M. C., Monteiro, P. T., Guerreiro, J. F., Gonçalves, J. P., Mira, N. P., dos Santos, S. C., ... & Madeira, S. C. (2013). The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae. Nucleic acids research, gkt1015.

36.Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., & Noble, W. S. (2007). Quantifying similarity between motifs. Genome biology, 8(2), 1.

37.Slattery, Matthew G., Dritan Liko, and Warren Heideman. "The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae." Eukaryotic cell 5.2 (2006): 313-320.

38.Bröhl, Stefanie, et al. "A new nuclear suppressor system for a mitochondrial RNA polymerase mutant identifies an unusual zinc‐finger protein and a polyglutamine domain protein in Saccharomyces cerevisiae." Yeast 10.6 (1994): 719-731.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊