(34.239.176.198) 您好!臺灣時間:2021/04/23 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅琪
研究生(外文):Ya-chi Chen
論文名稱:p53 及 ΔNp63α 對 CTEN 基因表現的調控
論文名稱(外文):Regulation of CTEN expression by p53 and ΔNp63α
指導教授:廖憶純
指導教授(外文):Yi-Chun Liao
口試委員:張麗冠謝淑貞黃楓婷
口試委員(外文):Li-Kwan ChangShu-Chen HsiehFeng-Ting Huang
口試日期:2016-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:CTENp53DNp63alpha
外文關鍵詞:CTENp53DNp63alpha
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
p53 蛋白質,有基因組守護員之稱,當細胞面臨壓力時, p53 致使細胞週期暫停和細胞凋亡等機制以維持基因的穩定性。p63 蛋白質為 p53 家族成員之一,對於上皮細胞的生長以及恆定扮演重要角色,其isoform ΔNp63α 蛋白質主要為維持上皮細胞的貼附能力。我們先前研究已發現 ΔNp63α 會與 CTEN 啟動子結合並調控其基因表現,參與細胞貼附的機制,以及隨著前列腺癌惡化程度提高,CTEN 與p63 的 mRNA 也會隨之下降。因此本論文假設 ΔNp63α 促進 CTEN 表現增加,能降低前列腺癌細胞惡化程度。本論文研究發現,在前列腺癌細胞中過量表現 ΔNp63α 蛋白質會促進CTEN mRNA及蛋白質表現量增加,然而增加的幅度並不大,我們認為除了外源表現的 ΔNp63α之外,在前列腺癌細胞中亦有其他的轉錄因子或 co-activator 共同參與調控 CTEN 的表現機制。另一方面,我們發現無論 p63 存在與否, p53 均抑制 CTEN promoter 轉錄活性,而在人類正常前列腺細胞株 RWPE-1 中,過量表現 p53 會造成 CTEN mRNA 及蛋白質表現量下降,我們以染色質免疫沉澱 (ChIP) 方式,證明了 p53 蛋白質會結合至 CTEN 啟動子上 -81~+25的 p53 預測結合位置上。此外,我們發現以 cisplatin 造成 DNA 損傷使細胞面臨生存壓力時,會促進 p53 表現量增加,並造成 CTEN mRNA 以及蛋白質表現量均下降之結果。本論文證實 p53 會結合在 ΔNp63α 亦辨識結合之 CTEN 啟動子位置上,抑制 CTEN 基因表現,並可能參與在細胞 DNA 損傷壓力的機制中。

p53, the guardian of genome, is involved in cell cycle arrest and apoptosis to maintain the stability of genome in cellular stress. p63, a member of the p53 transcriptional factor family, is a master of regulation of epithelial homeostasis and development. ΔNp63α, one of p63 isoforms, enhances the ability of cell adhesion. Our previous study revealed that ΔNp63α binds to putative p53 binding sites present in CTEN promoter and transcriptionally regulates CTEN expression involved in prostate cell adhesion. Furthermore, CTEN and p63 down-regulation correlates with prostate cancer progression from primary tumors to metastatic lesions. Therefore, we hypothesize that overexpression of ΔNp63α might enhance CTEN expression and hamper prostate cancer cell progression. In our study, overexpression of ΔNp63α in prostate cancer cells induced the mRNA and protein levels of CTEN. However the increases are slight. We assume that there might be other transcription factors or co-activators involved in the regulation of CTEN gene expression in prostate cancer cells in addition to exogenously expressed ΔNp63α. On the other hand, we found that p53 down-regulates CTEN promoter activity whether ΔNp63α exists or not. Also, overexpression of p53 decreased CTEN mRNA and protein in non-malignant prostate cell line, RWPE-1. By using the chromatin immunoprecipitation (ChIP) assay, we demonstrated that p53 binds to CTEN promoter within the region between -80 to +25. Moreover, by using cisplatin to induce DNA damage and celluar stress, we discovered that cisplatin exposure caused increased p53 and decreased the mRNA and protein levels of CTEN. In conclusion, our findings reveal that p53 binds to the CTEN promoter region which also recognized by ΔNp63α. p53 repressed the expression of CTEN in response to DNA damage stress.

縮寫表 iv
摘要 vi
Abstract vii
1 本論文之研究背景 1
1.1 p53家族成員簡介 1
1.2 p53 於細胞中所扮演之功能 1
1.3 p63 結構以及功能 2
1.4 p53 與 ΔNp63α 對相同目標基因的調控及對細胞功能之影響 4
1.5 CTEN 的結構 4
1.6 CTEN 調控細胞遷移能力 5
1.7 CTEN 的基因表現受到 ΔNp63α 的調控並與前列腺細胞貼附表現有關 6
1.8 本論文研究目的與重要性 7
2 材料與方法 8
2.1 Cell preparation 8
2.2 Plasmid preparation 9
2.3 Cell transfection 11
2.4 Dual luciferase assay 11
2.5 RNA analysis 12
2.6 Protein analysis 13
2.7 Immuno-precipitation (IP) 14
2.8 Chromatin Immuno-precipitation assay, ChIP 14
2.9 Radiation 16
2.10 Cisplatin treatment 16
3 研究結果 17
3.1 外源表現 ΔNp63α 於前列腺細胞中能促進 CTEN 表現 17
3.2 p53 蛋白質抑制 CTEN 啟動子活性 17
3.3 p53 抑制 CTEN mRNA 及蛋白質表現 18
3.4 p53 辨識結合於 CTEN 啟動子之序列 19
3.5 以放射線方式,誘導 p53 蛋白質表現觀察 CTEN 表現 20
3.6 以 cisplatin 誘導 p53 表現造成 CTEN mRNA 及蛋白質表現下降 21
4 討論與未來的研究方向 22
5 參考資料 27
6 圖與表 33



Abdelalim, E.M. and Tooyama, I. (2014). Knockdown of p53 suppresses Nanog expression in embryonic stem cells. Biochem Biophys Res Commun. 443, 652-657.

Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell. 137, 87-98.

Ahuja, D., Sáenz-Robles, M.T. and Pipas, J.M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 24, 7729-7745.

Al-Ghamdi, S., Albasri, A., Cachat, J., Ibrahem, S., Muhammad, B.A., Jackson, D., et al. (2011). Cten is targeted by Kras signalling to regulate cell motility in the colon and pancreas. PLoS One. 6, e20919.

Al-Ghamdi, S., Cachat, J., Albasri, A., Ahmed, M., Jackson, D., Zaitoun, A., et al. (2013). C-terminal tensin-like gene functions as an oncogene and promotes cell motility in pancreatic cancer. Pancreas. 42, 135-140.

Albasri, A., Al-Ghamdi, S., Fadhil, W., Aleskandarany, M., Liao, Y., Jackson, D., et al. (2011). Cten signals through integrin-linked kinase (ILK) and may promote metastasis in colorectal cancer. Oncogene. 30, 2997-3002.

Balboni, A.L., Cherukuri, P., Ung, M., DeCastro, A.J., Cheng, C. and DiRenzo, J. (2015). p53 and ΔNp63α Coregulate the Transcriptional and Cellular Response to TGFβ and BMP Signals. Mol Cancer Res. 13, 732-742.

Barbieri, C.E., Tang, L.J., Brown, K.A. and Pietenpol, J.A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 66, 7589-7597.

Bargonetti, J., Reynisdottir, I., Friedman, P.N. and Prives, C. (1992). Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev. 6, 1886-1898.

Barlow, C., Brown, K.D., Deng, C.-X., Tagle, D.A. and Wynshaw-Boris, A. (1997). Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Nat Genet. 17, 453-456.

Basu, A. and Krishnamurthy, S. (2010). Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids. 2010.

Calderwood, D.A., Fujioka, Y., de Pereda, J.M., García-Alvarez, B., Nakamoto, T., Margolis, B., et al. (2003). Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci U S A. 100, 2272-2277.

Chen, N.-T., Kuwabara, Y., Conley, C., Liao, Y.-C., Hong, S.-Y., Chen, M., et al. (2013). Phylogenetic analysis, expression patterns, and transcriptional regulation of human CTEN gene. Gene. 520, 90-97.

Colton, S.L., Xu, X.S., Wang, Y.A. and Wang, G. (2006). The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair-facilitated cell survival with cisplatin treatment. J Biol Chem. 281, 27117-27125.

Cordenonsi, M., Montagner, M., Adorno, M., Zacchigna, L., Martello, G., Mamidi, A., et al. (2007). Integration of TGF-ß and Ras/MAPK signaling through p53 phosphorylation. Science. 315, 840-843.

Deyoung, M. and Ellisen, L. (2007). p63 and p73 in human cancer: defining the network. Oncogene. 26, 5169-5183.

Freije, A., Molinuevo, R., Ceballos, L., Cagigas, M., Alonso-Lecue, P., Rodriguez, R., et al. (2014). Inactivation of p53 in human keratinocytes leads to squamous differentiation and shedding via replication stress and mitotic slippage. Cell Rep. 9, 1349-1360.

Hong, S.-Y., Shih, Y.-P., Li, T., Carraway, K.L. and Lo, S.H. (2013). CTEN prolongs signaling by EGFR through reducing its ligand-induced degradation. Cancer Res. 73, 5266-5276.

Huang, Y., Sen, T., Nagpal, J., Upadhyay, S., Trink, B., Ratovitski, E. and Sidransky, D. (2008). ATM kinase is a master switch for the ΔNp63α phosphorylation/degradation in human head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle. 7, 2846-2855.

Hung, S.Y., Shih, Y.P., Chen, M. and Lo, S.H. (2014). Up‐regulated cten by FGF2 contributes to FGF2‐mediated cell migration. Mol Carcinog. 53, 787-792.

Jamieson, E.R. and Lippard, S.J. (1999). Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev. 99, 2467-2498.

Jiang, D., Srinivasan, A., Lozano, G. and Robbins, P. (1993). SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene. 8, 2805-2812.

Jockusch, B.M., Bubeck, P., Giehl, K., Kroemker, M., Moschner, J., Rothkegel, M., et al. (1995). The molecular architecture of focal adhesions. Annu Rev Cell Dev Biol. 11, 379-416.

Katz, M., Amit, I., Citri, A., Shay, T., Carvalho, S., Lavi, S., et al. (2007). A reciprocal tensin-3–cten switch mediates EGF-driven mammary cell migration. Nat Cell Biol. 9, 961-969.

Kogan-Sakin, I., Tabach, Y., Buganim, Y., Molchadsky, A., Solomon, H., Madar, S., et al. (2011). Mutant p53R175H upregulates Twist1 expression and promotes epithelial–mesenchymal transition in immortalized prostate cells. Cell Death Differ. 18, 271-281.

Laurenzi, V. and Melino, G. (2000). Evolution of functions within the p53/p63/p73 family. Ann N Y Acad Sci. 926, 90-100.

Li, B. and Lee, M.Y. (2001). Transcriptional regulation of the human DNA polymerase δ catalytic subunit gene POLD1 by p53 tumor suppressor and Sp1. J Biol Chem. 276, 29729-29739.

Li, Y., Mizokami, A., Izumi, K., Narimoto, K., Shima, T., Zhang, J., et al. (2010). CTEN/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer. Prostate. 70, 48-60.

Liao, Y.-C., Si, L., deVere White, R.W. and Lo, S.H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. J Cell Biol. 176, 43-49.

Levrero, M., De Laurenzi, V., Costanzo, A., Gong, J., Wang, J. and Melino, G. (2000). The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 113, 1661-1670.

Liefer, K.M., Koster, M.I., Wang, X.-J., Yang, A., McKeon, F. and Roop, D.R. (2000). Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res. 60, 4016-4020.

Lin, T., Chao, C., Saito, S.i., Mazur, S.J., Murphy, M.E., Appella, E. and Xu, Y. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol. 7, 165-171.

Lo, S.H. (2004). Tensin. Int J Biochem Cell Biol. 36, 31-34.

Lo, S.H. and Lo, T.B. (2002). Cten, a COOH-terminal tensin-like protein with prostate restricted expression, is down-regulated in prostate cancer. Cancer Res. 62, 4217-4221.

Matos, I., Dufloth, R., Alvarenga, M., Zeferino, L.C. and Schmitt, F. (2005). p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Archiv. 447, 688-694.

Meek, D.W. (2009). Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer. 9, 714-723.

Midgley, C.A. and Lane, D.P. (1997). p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene. 15.

Mills, A.A., Zheng, B., Wang, X.-J., Vogel, H., Roop, D.R. and Bradley, A. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 398, 708-713.

Milner, J., Medcalf, E.A. and Cook, A.C. (1991). Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol. 11, 12-19.

Muharram, G., Sahgal, P., Korpela, T., De Franceschi, N., Kaukonen, R., Clark, K., et al. (2014). Tensin-4-dependent MET stabilization is essential for survival and proliferation in carcinoma cells. Dev Cell. 29, 421-436.

Nguyen, T.T., Cho, K., Stratton, S.A. and Barton, M.C. (2005). Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Mol Cell Biol. 25, 2147-2157.

Ratovitski, E.A., Patturajan, M., Hibi, K., Trink, B., Yamaguchi, K. and Sidransky, D. (2001). p53 associates with and targets ΔNp63 into a protein degradation pathway. Proc Natl Acad Sci U S A. 98, 1817-1822.

Rocco, J.W., Leong, C.-O., Kuperwasser, N., DeYoung, M.P. and Ellisen, L.W. (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell. 9, 45-56.

Schavolt, K. and Pietenpol, J. (2007). p53 and ΔNp63α differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene. 26, 6125-6132.

Scian, M.J., Stagliano, K.E., Ellis, M.A., Hassan, S., Bowman, M., Miles, M.F., et al. (2004). Modulation of gene expression by tumor-derived p53 mutants. Cancer Res. 64, 7447-7454.

Sheppard, H.M., Corneillie, S.I., Espiritu, C., Gatti, A. and Liu, X. (1999). New insights into the mechanism of inhibition of p53 by simian virus 40 large T antigen. Mol Cell Biol. 19, 2746-2753.

Signoretti, S., Waltregny, D., Dilks, J., Isaac, B., Lin, D., Garraway, L., et al. (2000). p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol. 157, 1769-1775.

Stindt, M.H., Muller, P.A., Ludwig, R.L., Kehrloesser, S., Dötsch, V. and Vousden, K.H. (2015). Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene. 34, 4300-4310.

Su, X., Chakravarti, D., Cho, M.S., Liu, L., Gi, Y.J., Lin, Y.-L., et al. (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature. 467, 986-990.

Talos, F., Abraham, A., Vaseva, A., Holembowski, L., Tsirka, S., Scheel, A., et al. (2010). p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death Differ. 17, 1816-1829.

Technau, A., Wolff, A., Sauder, C., Birkner, N. and Brandner, G. (2001). p53 in SV40-transformed DNA-damaged human cells binds to its cognate sequence but fails to transactivate target genes. Int J Oncol. 18, 281-286.

Wang, S.-P., Wang, W.-L., Chang, Y.-L., Wu, C.-T., Chao, Y.-C., Kao, S.-H., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 11, 694-704.

Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R.T., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 398, 714-718.

Yang, K., Wu, W.-M., Chen, Y.-C., Lo, S.H. and Liao, Y.-C. (2016). [delta] Np63 [alpha] Transcriptionally Regulates the Expression of CTEN That Is Associated with Prostate Cell Adhesion. PLoS One. 11.

Zilfou, J.T. and Lowe, S.W. (2009). Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 1, a001883.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔