|
1.Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011). 2.Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860-867 (2002). 3.Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239-252 (2009). 4.Solinas, G., Germano, G., Mantovani, A. & Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86, 1065-1073 (2009). 5.Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51 (2010). 6.Mantovani, A., Schioppa, T., Porta, C., Allavena, P. & Sica, A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25, 315-322 (2006). 7.Tjiu, J.W., et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol 129, 1016-1025 (2009). 8.Kawai, O., et al. Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113, 1387-1395 (2008). 9.Welsh, T.J., et al. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23, 8959-8967 (2005). 10.Ohri, C.M., Shikotra, A., Green, R.H., Waller, D.A. & Bradding, P. Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 33, 118-126 (2009). 11.Biswas, S.K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11, 889-896 (2010). 12.Virelizier, J.L. & Arenzana-Seisdedos, F. Immunological functions of macrophages and their regulation by interferons. Med Biol 63, 149-159 (1985). 13.Keller, R., Keist, R., Wechsler, A., Leist, T.P. & van der Meide, P.H. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 46, 682-686 (1990). 14.Elgert, K.D., Alleva, D.G. & Mullins, D.W. Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64, 275-290 (1998). 15.Mantovani, A., et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25, 677-686 (2004). 16.Sica, A., et al. Macrophage polarization in tumour progression. Semin Cancer Biol 18, 349-355 (2008). 17.Wang, R., et al. Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer. J Exp Clin Cancer Res 30, 62 (2011). 18.Verreck, F.A., et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 101, 4560-4565 (2004). 19.Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 3, 23-35 (2003). 20.Jouanguy, E., et al. IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11, 346-351 (1999). 21.Chacon-Salinas, R., et al. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 140, 443-449 (2005). 22.Cavaillon, J.M. & Adib-Conquy, M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10, 233 (2006). 23.Biondi, A., Peri, G., Colombo, N., Bolis, G. & Mantovani, A. Antibody-dependent and -independent cytotoxicity of human mononuclear phagocytes: defective stimulation of tumoricidal activity in milk macrophages. Clin Exp Immunol 49, 701-708 (1982). 24.Shrivastava, A., Shishodia, S. & Sodhi, A. Expression of LFA-1 adhesion molecules on cisplatin-treated macrophages. Biochim Biophys Acta 1402, 269-276 (1998). 25.Urban, J.L., Shepard, H.M., Rothstein, J.L., Sugarman, B.J. & Schreiber, H. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc Natl Acad Sci U S A 83, 5233-5237 (1986). 26.Hibbs, J.B., Jr., Taintor, R.R., Vavrin, Z. & Rachlin, E.M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157, 87-94 (1988). 27.Keller, R., Geiges, M. & Keist, R. L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res 50, 1421-1425 (1990). 28.Mytar, B., et al. Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. Br J Cancer 79, 737-743 (1999). 29.Odegaard, J.I., et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116-1120 (2007). 30.Odegaard, J.I., et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7, 496-507 (2008). 31.Odegaard, J.I. & Chawla, A. Alternative macrophage activation and metabolism. Annu Rev Pathol 6, 275-297 (2011). 32.Sica, A., et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164, 762-767 (2000). 33.Maeda, H., et al. TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J Immunol 155, 4926-4932 (1995). 34.Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549-555 (2002). 35.Marconi, C., et al. Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells. Clin Exp Metastasis 25, 225-231 (2008). 36.Melani, C., Sangaletti, S., Barazzetta, F.M., Werb, Z. & Colombo, M.P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67, 11438-11446 (2007). 37.Dai, F., et al. The number and microlocalization of tumor-associated immune cells are associated with patient''s survival time in non-small cell lung cancer. BMC Cancer 10, 220 (2010). 38.Kang, J.C., Chen, J.S., Lee, C.H., Chang, J.J. & Shieh, Y.S. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol 102, 242-248 (2010). 39.Steidl, C., et al. Tumor-associated macrophages and survival in classic Hodgkin''s lymphoma. N Engl J Med 362, 875-885 (2010). 40.Kurahara, H., et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167, e211-219 (2011). 41.Buddingh, E.P., et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res 17, 2110-2119 (2011). 42.Zhang, F., Lu, W. & Dong, Z. Tumor-infiltrating macrophages are involved in suppressing growth and metastasis of human prostate cancer cells by INF-beta gene therapy in nude mice. Clin Cancer Res 8, 2942-2951 (2002). 43.Levano, K.S., Jung, E.H. & Kenny, P.A. Breast cancer subtypes express distinct receptor repertoires for tumor-associated macrophage derived cytokines. Biochem Biophys Res Commun 411, 107-110 (2011). 44.Bingle, L., Brown, N.J. & Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196, 254-265 (2002). 45.Lewis, C.E. & Pollard, J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605-612 (2006). 46.Chen, J.J., et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23, 953-964 (2005). 47.Chen, J.J., et al. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 9, 729-737 (2003). 48.Hagemann, T., et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25, 1543-1549 (2004). 49.Lin, E.Y., Nguyen, A.V., Russell, R.G. & Pollard, J.W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193, 727-740 (2001). 50.Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7, 987-989 (2001). 51.Rolny, C., et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44 (2011). 52.Gabrilovich, D.I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162-174 (2009). 53.DeNardo, D.G., et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91-102 (2009). 54.Biswas, S.K., et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112-2122 (2006). 55.Ojalvo, L.S., King, W., Cox, D. & Pollard, J.W. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol 174, 1048-1064 (2009). 56.Movahedi, K., et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70, 5728-5739 (2010). 57.Curiel, T.J., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942-949 (2004). 58.Martinez, F.O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177, 7303-7311 (2006). 59.Beyer, M. & Schultze, J.L. Plasticity of T(reg) cells: is reprogramming of T(reg) cells possible in the presence of FOXP3? Int Immunopharmacol 11, 555-560 (2011). 60.Wrzesinski, S.H., Wan, Y.Y. & Flavell, R.A. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13, 5262-5270 (2007). 61.Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The origin and function of tumor-associated macrophages. Immunol Today 13, 265-270 (1992). 62.Xue, W., et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660 (2007). 63.Squadrito, M.L. & De Palma, M. Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med 32, 123-145 (2011). 64.Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-727 (2006). 65.Dirkx, A.E., Oude Egbrink, M.G., Wagstaff, J. & Griffioen, A.W. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80, 1183-1196 (2006). 66.Vesely, M.D., Kershaw, M.H., Schreiber, R.D. & Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29, 235-271 (2011). 67.Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity''s roles in cancer suppression and promotion. Science 331, 1565-1570 (2011). 68.Goh, A.M., Coffill, C.R. & Lane, D.P. The role of mutant p53 in human cancer. J Pathol 223, 116-126 (2011). 69.Lane, D. & Levine, A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2, a000893 (2010). 70.Reinhardt, H.C. & Schumacher, B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28, 128-136 (2012). 71.Ozaki, T. & Nakagawara, A. p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2011, 603925 (2011). 72.Komarova, E.A., et al. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23, 3265-3271 (2004). 73.Tavana, O., et al. Absence of p53-dependent apoptosis leads to UV radiation hypersensitivity, enhanced immunosuppression and cellular senescence. Cell Cycle 9, 3328-3336 (2010). 74.Martinez-Cruz, A.B., et al. Spontaneous tumor formation in Trp53-deficient epidermis mediated by chromosomal instability and inflammation. Anticancer Res 29, 3035-3042 (2009). 75.Donehower, L.A., et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221 (1992). 76.Lujambio, A., et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449-460 (2013). 77.Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798-809 (2009). 78.Lee, C.K., Smith, E., Gimeno, R., Gertner, R. & Levy, D.E. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN-gamma. J Immunol 164, 1286-1292 (2000). 79.Kovarik, J., et al. Malignant melanoma associates with deficient IFN-induced STAT 1 phosphorylation. Int J Mol Med 12, 335-340 (2003). 80.Deng, H., et al. The antagonistic effect between STAT1 and Survivin and its clinical significance in gastric cancer. Oncol Lett 3, 193-199 (2012). 81.Simpson, J.A., et al. Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut 59, 926-933 (2010). 82.Adamkova, L., Souckova, K. & Kovarik, J. Transcription protein STAT1: biology and relation to cancer. Folia Biol (Praha) 53, 1-6 (2007). 83.Koebel, C.M., et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903-907 (2007). 84.Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6, 836-848 (2006). 85.Darnell, J.E., Jr., Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421 (1994). 86.Meraz, M.A., et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431-442 (1996). 87.Durbin, J.E., Hackenmiller, R., Simon, M.C. & Levy, D.E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450 (1996). 88.Eizirik, D.L., Moore, F., Flamez, D. & Ortis, F. Use of a systems biology approach to understand pancreatic beta-cell death in Type 1 diabetes. Biochem Soc Trans 36, 321-327 (2008). 89.Suk, K., et al. IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J Immunol 166, 4481-4489 (2001). 90.Moore, F., et al. STAT1 is a master regulator of pancreatic {beta}-cell apoptosis and islet inflammation. J Biol Chem 286, 929-941 (2011). 91.Bouker, K.B., et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 26, 1527-1535 (2005). 92.Barthson, J., et al. Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem 286, 39632-39643 (2011). 93.Chin, Y.E., et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272, 719-722 (1996). 94.Kumar, A., Commane, M., Flickinger, T.W., Horvath, C.M. & Stark, G.R. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278, 1630-1632 (1997). 95.Xu, X., Fu, X.Y., Plate, J. & Chong, A.S. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 58, 2832-2837 (1998). 96.Huang, Y.Q., Li, J.J. & Karpatkin, S. Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway. J Biol Chem 275, 6462-6468 (2000). 97.Levy, D.E. & Gilliland, D.G. Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene 19, 2505-2510 (2000). 98.Kaplan, D.H., et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95, 7556-7561 (1998). 99.Lee, C.K., et al. Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol 165, 3571-3577 (2000). 100.Takaoka, A., et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516-523 (2003). 101.Ventura, A., et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661-665 (2007). 102.Yamanishi, Y., et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol 160, 123-130 (2002). 103.Okuda, Y., Okuda, M. & Bernard, C.C. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol 135, 29-37 (2003). 104.Kim, H.S. & Lee, M.S. STAT1 as a key modulator of cell death. Cell Signal 19, 454-465 (2007). 105.Maier, B., et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev 18, 306-319 (2004). 106.Liu, D. & Xu, Y. p53, oxidative stress, and aging. Antioxid Redox Signal 15, 1669-1678 (2011). 107.Townsend, P.A., et al. STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279, 5811-5820 (2004). 108.Youlyouz-Marfak, I., et al. Identification of a novel p53-dependent activation pathway of STAT1 by antitumour genotoxic agents. Cell Death Differ 15, 376-385 (2008). 109.Yoshimura, A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 97, 439-447 (2006). 110.Zheng, S.J., Lamhamedi-Cherradi, S.E., Wang, P., Xu, L. & Chen, Y.H. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54, 1423-1428 (2005). 111.Lin, S.Y., et al. HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma. Nucleic Acids Res 38, 6148-6158 (2010). 112.Chang, T.P., et al. Tumor suppressor HLJ1 binds and functionally alters nucleophosmin via activating enhancer binding protein 2alpha complex formation. Cancer research 70, 1656-1667 (2010). 113.Chen, C.H. Generalized Association Plots for Information Visualization: The applications of the convergence of iteratively formed correlation matrices Statistica Sinica 12, 1-23 (2002). 114.Shedden, K., et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14, 822-827 (2008). 115.Robinson, B.D., et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15, 2433-2441 (2009). 116.Mukhtar, R.A., Nseyo, O., Campbell, M.J. & Esserman, L.J. Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn 11, 91-100 (2011). 117.Ma, J., et al. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10, 112 (2010). 118.Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22, 231-237 (2010). 119.Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. & Schreiber, R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3, 991-998 (2002). 120.Luo, Y.P., et al. The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene 29, 662-673 (2010). 121.Konstantopoulos, K. & Thomas, S.N. Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11, 177-202 (2009). 122.Miyazono, K., Ehata, S. & Koinuma, D. Tumor-promoting functions of transforming growth factor-beta in progression of cancer. Ups J Med Sci (2011). 123.Yuan, Y., et al. Angiogenin is involved in lung adenocarcinoma cell proliferation and angiogenesis. Lung Cancer 66, 28-36 (2009). 124.Yoshioka, N., Wang, L., Kishimoto, K., Tsuji, T. & Hu, G.F. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc Natl Acad Sci U S A 103, 14519-14524 (2006). 125.Demidova, A.R., Aau, M.Y., Zhuang, L. & Yu, Q. Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control. J Biol Chem 284, 4132-4139 (2009). 126.St Germain, C., et al. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3. Neoplasia 12, 527-538 (2010). 127.Taguchi, T., et al. Protein levels of p21, p27, cyclin E and Bax predict sensitivity to cisplatin and paclitaxel in head and neck squamous cell carcinomas. Oncol Rep 11, 421-426 (2004). 128.Sheikh, M.S., et al. Identification of several human homologs of hamster DNA damage-inducible transcripts. Cloning and characterization of a novel UV-inducible cDNA that codes for a putative RNA-binding protein. J Biol Chem 272, 26720-26726 (1997). 129.Oyadomari, S. & Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11, 381-389 (2004). 130.Lee, Y.Y., Cevallos, R.C. & Jan, E. An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2alpha phosphorylation. J Biol Chem 284, 6661-6673 (2009). 131.Zerbini, L.F., et al. NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci U S A 101, 13618-13623 (2004). 132.Smith, M.L., et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266, 1376-1380 (1994). 133.Novakova, Z., et al. Cytokine expression and signaling in drug-induced cellular senescence. Oncogene 29, 273-284 (2010). 134.Kuilman, T., et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031 (2008). 1.Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA: a cancer journal for clinicians 64, 9-29 (2014). 2.Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F. & Wong, K.K. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14, 535-546 (2014). 3.Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011). 4.Hajra, K.M., Chen, D.Y. & Fearon, E.R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62, 1613-1618 (2002). 5.Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nature cell biology 16, 488-494 (2014). 6.Gardi, N.L., Deshpande, T.U., Kamble, S.C., Budhe, S.R. & Bapat, S.A. Discrete molecular classes of ovarian cancer suggestive of unique mechanisms of transformation and metastases. Clinical cancer research : an official journal of the American Association for Cancer Research 20, 87-99 (2014). 7.Shih, J.Y., et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 8070-8078 (2005). 8.Martinez-Estrada, O.M., et al. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. The Biochemical journal 394, 449-457 (2006). 9.Chen, J.J., et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61, 5223-5230 (2001). 10.Wang, C.C., et al. The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 24, 4081-4093 (2005). 11.Chen, C.H., et al. A novel function of YWHAZ/beta-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis. Molecular cancer research : MCR 10, 1319-1331 (2012). 12.Chen, C.C., et al. Shisa3 is associated with prolonged survival through promoting beta-catenin degradation in lung cancer. American journal of respiratory and critical care medicine 190, 433-444 (2014). 13.Semi, K., Matsuda, Y., Ohnishi, K. & Yamada, Y. Cellular reprogramming and cancer development. Int J Cancer 132, 1240-1248 (2013). 14.Zendman, A.J., Cornelissen, I.M., Weidle, U.H., Ruiter, D.J. & van Muijen, G.N. CTp11, a novel member of the family of human cancer/testis antigens. Cancer Res 59, 6223-6229 (1999). 15.Zendman, A.J., et al. The human SPANX multigene family: genomic organization, alignment and expression in male germ cells and tumor cell lines. Gene 309, 125-133 (2003). 16.Westbrook, V.A., et al. Spermatid-specific expression of the novel X-linked gene product SPAN-X localized to the nucleus of human spermatozoa. Biology of reproduction 63, 469-481 (2000). 17.Westbrook, V.A., et al. Genomic organization, incidence, and localization of the SPAN-x family of cancer-testis antigens in melanoma tumors and cell lines. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 101-112 (2004). 18.Salemi, M., et al. Expression of SPANX proteins in human-ejaculated spermatozoa and sperm precursors. International journal of andrology 27, 134-139 (2004). 19.Westbrook, V.A., et al. Hominoid-specific SPANXA/D genes demonstrate differential expression in individuals and protein localization to a distinct nuclear envelope domain during spermatid morphogenesis. Molecular human reproduction 12, 703-716 (2006). 20.Wang, Z., et al. Gene expression and immunologic consequence of SPAN-Xb in myeloma and other hematologic malignancies. Blood 101, 955-960 (2003). 21.Zamuner, F.T., et al. A Comprehensive Expression Analysis of Cancer Testis Antigens in Head and Neck Squamous Cell Carcinoma Revels MAGEA3/6 as a Marker for Recurrence. Molecular cancer therapeutics 14, 828-834 (2015). 22.Yilmaz-Ozcan, S., et al. Epigenetic mechanisms underlying the dynamic expression of cancer-testis genes, PAGE2, -2B and SPANX-B, during mesenchymal-to-epithelial transition. PloS one 9, e107905 (2014). 23.Salemi, M., et al. Expression of SPANX proteins in normal prostatic tissue and in prostate cancer. European journal of histochemistry : EJH 54, e41 (2010). 24.Kouprina, N., et al. Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome research 15, 1477-1486 (2005). 25.Tajeddine, N., et al. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 65, 7348-7355 (2005). 26.Kalashnikova, E.V., et al. ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2. Cancer Res 70, 9402-9412 (2010). 27.Iles, R.K. Ectopic hCGbeta expression by epithelial cancer: malignant behaviour, metastasis and inhibition of tumor cell apoptosis. Mol Cell Endocrinol 260-262, 264-270 (2007). 28.Song, M.H., Choi, K.U., Shin, D.H., Lee, C.H. & Lee, S.Y. Identification of the cancer/testis antigens AKAP3 and CTp11 by SEREX in hepatocellular carcinoma. Oncology reports 28, 1792-1798 (2012). 29.Chen, Z., et al. Cancer/testis antigens and clinical risk factors for liver metastasis of colorectal cancer: a predictive panel. Diseases of the colon and rectum 53, 31-38 (2010). 30.Yang, P., Huo, Z., Liao, H. & Zhou, Q. Cancer/testis antigens trigger epithelial-mesenchymal transition and genesis of cancer stem-like cells. Current pharmaceutical design 21, 1292-1300 (2015). 31.Kouprina, N., et al. Mutational analysis of SPANX genes in families with X-linked prostate cancer. The Prostate 67, 820-828 (2007). 32.Chen, Y.T., Cao, D., Chiu, R. & Lee, P. Chromosome X-encoded Cancer/Testis antigens are less frequently expressed in non-seminomatous germ cell tumors than in seminomas. Cancer immunity 13, 10 (2013). 33.Westbrook, V.A., et al. Differential nuclear localization of the cancer/testis-associated protein, SPAN-X/CTp11, in transfected cells and in 50% of human spermatozoa. Biology of reproduction 64, 345-358 (2001). 34.Eferl, R. & Wagner, E.F. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3, 859-868 (2003). 35.Kappelmann, M., Bosserhoff, A. & Kuphal, S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. European journal of cell biology 93, 76-81 (2014). 36.Yan, L., et al. Activation of the canonical Wnt/beta-catenin pathway in ATF3-induced mammary tumors. PloS one 6, e16515 (2011). 37.Nguyen, P.T., et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. British journal of cancer 109, 2248-2258 (2013). 38.Chen, H., et al. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 69, 9228-9235 (2009). 39.Ramsdale, R., et al. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal 8, ra82 (2015). 40.Liu, J., et al. The oncogene c-Jun impedes somatic cell reprogramming. Nature cell biology 17, 856-867 (2015). 41.Gerald, D., Chintharlapalli, S., Augustin, H.G. & Benjamin, L.E. Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy. Cancer Res 73, 1649-1657 (2013). 42.Imanishi, Y., et al. Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67, 4254-4263 (2007). 43.Dong, Y.D., et al. Expression and clinical significance of HMGB1 in human liver cancer: Knockdown inhibits tumor growth and metastasis in vitro and in vivo. Oncology reports 29, 87-94 (2013). 44.Chang, Y.H., Chen, C.M., Chen, H.Y. & Yang, P.C. Pathway-based gene signatures predicting clinical outcome of lung adenocarcinoma. Scientific reports 5, 10979 (2015). 45.Chow, K.H., Factor, R.E. & Ullman, K.S. The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12, 196-209 (2012). 46.Gonzalez, J.M., Navarro-Puche, A., Casar, B., Crespo, P. & Andres, V. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 183, 653-666 (2008). 47.Van den Bossche, J., Malissen, B., Mantovani, A., De Baetselier, P. & Van Ginderachter, J.A. Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 119, 1623-1633 (2012). 48.Salahshor, S., et al. Frequent accumulation of nuclear E-cadherin and alterations in the Wnt signaling pathway in esophageal squamous cell carcinomas. Mod Pathol 21, 271-281 (2008). 49.Su, Y.J., Chang, Y.W., Lin, W.H., Liang, C.L. & Lee, J.L. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/beta-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis 4, e157 (2015). 50.Chetty, R., Serra, S. & Asa, S.L. Loss of membrane localization and aberrant nuclear E-cadherin expression correlates with invasion in pancreatic endocrine tumors. Am J Surg Pathol 32, 413-419 (2008). 51.Hou, J., et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PloS one 5, e10312 (2010).
|