跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭乂菁
研究生(外文):Yi-Jing Hsiao
論文名稱:探討肺癌中巨噬細胞影響的癌症進程及SPANXA抑制腫瘤轉移的機制
論文名稱(外文):Mechanisms of Tumor Associated Macrophage-altered Cancer Progression and SPANXA-mediated Metastatic Suppression in Lung Cancer
指導教授:俞松良俞松良引用關係
口試委員:楊慕華林亮音莊雅惠徐立中顧家綺蘇剛毅
口試日期:2016-07-12
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:173
中文關鍵詞:腫瘤相關巨噬細胞M1 巨噬細胞p53STAT1細胞凋亡SPANXASNAI2Slugc-JUN表皮-間質型態轉換肺腺癌
外文關鍵詞:TAMM1 macrophagep53STAT1apoptosisSPANXASNAI2Slugc-JUNEMTlung adenocarcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在腫瘤微環境中的巨噬細胞被分類成M1及M2兩種型態。M1 巨噬細胞的表現在臨床上與肺癌病人有較佳的預後相關。因此,我們發現不同巨噬細胞對於肺癌細胞的影響。我們發現M2a/M2c巨噬細胞促進肺癌細胞A549侵襲能力及異種皮移植腫瘤生長。M1 巨噬細胞則是抑制血管新生。M1 巨噬細胞促進A549對於化療藥cisplatin的敏感度以及減少內皮細胞管柱生成活性,並藉由誘發細胞凋亡及衰老抑制細胞的生存能力。藉由微陣列表達基因晶片,我們鑑定出不同巨噬細胞對於A549的衝擊影響。巨噬細胞在A549中調控的基因與免疫反應,細胞骨架重組,凝結反應,細胞貼附及細胞凋亡路徑有關。被鑑定出的M1/M2基因特徵與肺癌病人較長的總體存活率有顯著相關性。另外,給予注射M1的培養基可以減小A549在老鼠皮下生長的腫瘤大小。M1培養基誘發細胞凋亡並且促進p53蛋白累積。更甚,M1藉由減少p53泛素化作用而延長p53蛋白的穩定度。接著,我們發現STAT1是一個主要的調控p53蛋白累積的基因。STAT1在M1培養基刺激下會大量表現並活化。STAT1減少p53泛素化作用而抑制STAT1則可以回復因為M1而增加的p53的穩定度。STAT1及p53的交互作用因M1而增加,但會因為外送STAT1-Y701F而減少。抑制STAT1的活化或是抑制IFNAR2, JAK1 及 TYK2基因表現都可以抑制M1誘發的細胞凋亡。總和來說,M1誘發的細胞凋亡及p53蛋白累積需要STAT1的訊息傳遞。M1誘發的細胞凋亡是與IFN-γ無關的路徑產生的。我們的發現指出M1巨噬細胞在癌症免疫中扮演很重要的角色,這角色是藉由引起在肺癌中STAT1的活化及p53蛋白的累積。
SPANXA(在X染色體上與細胞核相關精子蛋白家族成員A1/A2)是一個癌-睪丸抗原,表現在正常的睪丸中,但在各種腫瘤中也會不正常表現。它的角色在晶子發育跟癌症發展中都還未知。我們發現與高侵襲性的細胞CL1-5相比,SPANXA大量表現在低侵襲的CL1-0細胞中。因此,我們想調查SPANXA在肺腺癌中對於癌轉移的角色。SPANXA喜歡表現在腫瘤組織上並且與肺腺癌病人較長的存活率相關。SPANXA在試管內及生物體內能夠抑制肺癌細胞侵襲及轉移。藉由微陣列晶片表現基因及路徑分析,我們發現SPANXA 影響的基因集中在表皮-間質型態轉換 (EMT) 路徑。當SPANXA表示時細胞的塑性會朝向MET過程。Slug在肺癌中是一個很重要的轉錄因子,可誘發EMT同時抑制維持細胞黏附的蛋白E-cadherin. SPANXA可以抑制Slug表現導致E-cadherin上升。更甚,給予或抑制Slug表現可以回復因為SPANXA表現所抑制的細胞侵襲能力。c-JUN是一個正向調控EMT的基因。靜默SPANXA增加c-JUN mRNA的表現,抑制c-JUN則導致SNAI2降低。我們也發現SPANXA 減少Lamin A/C 而增加核內的E-cadherin。我們的結果清楚的定義在肺腺癌中SPANXA為一個EMT的抑制蛋白,是藉由抑制c-JUN-SNAI2。





Macrophages in a tumor microenvironment have been characterized as M1- and M2-polarized subtypes. M1 macrophage is associated with favorable outcome of lung cancer patients clinically. Herein, we discover the different macrophages’ influences on lung cancer cell. We found M2a/M2c subtypes promote A549 invasion and xenograft tumor growth. The M1 subtype suppressed angiogenesis. M1 enhanced the sensitivity of A549 to cisplatin and decreased the tube formation activity and cell viability of A549 cells by inducing apoptosis and senescence. By expression microarray, we identified the impacts from different macrophage subtypes on A549. The regulated genes were involved in the immune response, cytoskeletal remodeling, coagulation, cell adhesion, and apoptosis pathways in A549 cells. The identified M1/M2 gene signatures were significantly correlated with the extended overall survival of lung cancer patients. Administration of M1 conditioned media (CM) to A549-bearing mice significantly reduced the tumor size. Microarray analysis indicated that p53 was a critical regulator in M1-treated A549. M1 CM induced cell apoptosis and enhanced wt-p53 accumulation. Furthermore, M1 prolonged p53 protein stability by reducing its ubiquitination. Next, we revealed that STAT1 is a key mediator for p53 accumulation. STAT1 was up-regulated and activated upon M1 CM stimulation. STAT1 reduced p53 ubiquitination and knockdown STAT1 reversed the increase of p53 stability. The interaction of STAT1 and p53 was enhanced by M1 CM, but it was reduced by STAT1-Y701F. Inhibiting STAT1 activation or silencing the IFNAR2, JAK1 and TYK2 inhibited M1-induced apoptosis. Taken together, STAT1 signaling is required for M1 CM-induced apoptosis through p53 accumulation. The M1 CM-induced apoptosis was IFN-γ-independent. Our findings imply that M1 macrophages play an important role in the immune surveillance for cancer progression by inducing STAT1 activation and p53 accumulation in lung cancers.
SPANXA (Sperm Protein Associated with the Nucleus on the X-chromosome family, A1/A2) is identified as a cancer-testis antigens expressed in normal testis but dysregulated in various tumors. It plays unknown roles in spermiogenesis and cancer progression. We discovered SPANXA highly expressed in the low-invasive CL1-0 cells compared with the isogenous high-invasive CL1-5 cells. Herein, we investigated the role of SPANXA in metastasis of lung adenocarcinoma. SPANXA was preferably expressed in tumor tissues and associated with the prolonged survival of lung cancer patients. SPANXA suppressed the invasion and metastasis of lung cancer cells in vitro and in vivo. By the expression microarray and pathway analysis, we found that the SPANXA-altered genes were enriched in the epithelial–mesenchymal transition (EMT) pathway. The cell plasticity undergoes MET while SPANXA expresses. Slug is an important transcription factor in lung cancer progression and also an EMT inducer which represses E-cadherin, a protein maintaining cell-cell adherin. SPANXA reduced Slug expression resulted in up-regulating E-cadherin. Furthermore, the restoration or inhibition of Slug could reverse the invasive suppression of SPANXA. c-JUN acts as the positive-regulator of EMT. Silencing SPANXA increased c-JUN mRNA expression and blockage of c-JUN led to SNAI2 down-regulation. We also discovered that the Lamin A/C decreased and E-cadherin increased in the nucleus. Our results clearly characterized SPANXA as an EMT inhibitor by suppressing c-JUN-SNAI2 axis in lung adenocarcinoma.



目 錄

口試委員會審定書……………………………………………………….… i
誌謝………………………………………………………………………………... ii
中文摘要………………………………………………………………………….. iii
英文摘要………………………………………………………………………….. iv
第一章 M1/M2 巨噬細胞改變癌症進程
1.1 引言……………………………………………………………………..... 1
1.2 材料方法……………………………………………………………………. 17
1.3 結果…………………………………………………………………………... 26
1.4 討論…………………………………………………………………………... 38
參考文獻…………………………………………………………………….…….. 47
圖表………………………………………………………………………………….... 67
第二章 SPANXA調控抑制癌轉移機制
中文摘要………………………………………………………………………... 103
英文摘要………………………………………………………………………... 104
2.1 引言…………………………………………………………………....… 106
2.2 材料方法……………………………………………………………..…… 109
2.3 結果…………………………………………………………………....… 117
2.4 討論……………………………………………………………..…...… 127
參考文獻………………………………………………………………………..… 133
圖表……………………………………………………………………………….... 141
附錄………………………………………………………………………..……... 161


1.Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).
2.Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860-867 (2002).
3.Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239-252 (2009).
4.Solinas, G., Germano, G., Mantovani, A. & Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86, 1065-1073 (2009).
5.Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51 (2010).
6.Mantovani, A., Schioppa, T., Porta, C., Allavena, P. & Sica, A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25, 315-322 (2006).
7.Tjiu, J.W., et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol 129, 1016-1025 (2009).
8.Kawai, O., et al. Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113, 1387-1395 (2008).
9.Welsh, T.J., et al. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23, 8959-8967 (2005).
10.Ohri, C.M., Shikotra, A., Green, R.H., Waller, D.A. & Bradding, P. Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 33, 118-126 (2009).
11.Biswas, S.K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11, 889-896 (2010).
12.Virelizier, J.L. & Arenzana-Seisdedos, F. Immunological functions of macrophages and their regulation by interferons. Med Biol 63, 149-159 (1985).
13.Keller, R., Keist, R., Wechsler, A., Leist, T.P. & van der Meide, P.H. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 46, 682-686 (1990).
14.Elgert, K.D., Alleva, D.G. & Mullins, D.W. Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64, 275-290 (1998).
15.Mantovani, A., et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25, 677-686 (2004).
16.Sica, A., et al. Macrophage polarization in tumour progression. Semin Cancer Biol 18, 349-355 (2008).
17.Wang, R., et al. Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer. J Exp Clin Cancer Res 30, 62 (2011).
18.Verreck, F.A., et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 101, 4560-4565 (2004).
19.Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 3, 23-35 (2003).
20.Jouanguy, E., et al. IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11, 346-351 (1999).
21.Chacon-Salinas, R., et al. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 140, 443-449 (2005).
22.Cavaillon, J.M. & Adib-Conquy, M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10, 233 (2006).
23.Biondi, A., Peri, G., Colombo, N., Bolis, G. & Mantovani, A. Antibody-dependent and -independent cytotoxicity of human mononuclear phagocytes: defective stimulation of tumoricidal activity in milk macrophages. Clin Exp Immunol 49, 701-708 (1982).
24.Shrivastava, A., Shishodia, S. & Sodhi, A. Expression of LFA-1 adhesion molecules on cisplatin-treated macrophages. Biochim Biophys Acta 1402, 269-276 (1998).
25.Urban, J.L., Shepard, H.M., Rothstein, J.L., Sugarman, B.J. & Schreiber, H. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc Natl Acad Sci U S A 83, 5233-5237 (1986).
26.Hibbs, J.B., Jr., Taintor, R.R., Vavrin, Z. & Rachlin, E.M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157, 87-94 (1988).
27.Keller, R., Geiges, M. & Keist, R. L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res 50, 1421-1425 (1990).
28.Mytar, B., et al. Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. Br J Cancer 79, 737-743 (1999).
29.Odegaard, J.I., et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116-1120 (2007).
30.Odegaard, J.I., et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7, 496-507 (2008).
31.Odegaard, J.I. & Chawla, A. Alternative macrophage activation and metabolism. Annu Rev Pathol 6, 275-297 (2011).
32.Sica, A., et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164, 762-767 (2000).
33.Maeda, H., et al. TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J Immunol 155, 4926-4932 (1995).
34.Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549-555 (2002).
35.Marconi, C., et al. Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells. Clin Exp Metastasis 25, 225-231 (2008).
36.Melani, C., Sangaletti, S., Barazzetta, F.M., Werb, Z. & Colombo, M.P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67, 11438-11446 (2007).
37.Dai, F., et al. The number and microlocalization of tumor-associated immune cells are associated with patient''s survival time in non-small cell lung cancer. BMC Cancer 10, 220 (2010).
38.Kang, J.C., Chen, J.S., Lee, C.H., Chang, J.J. & Shieh, Y.S. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol 102, 242-248 (2010).
39.Steidl, C., et al. Tumor-associated macrophages and survival in classic Hodgkin''s lymphoma. N Engl J Med 362, 875-885 (2010).
40.Kurahara, H., et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167, e211-219 (2011).
41.Buddingh, E.P., et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res 17, 2110-2119 (2011).
42.Zhang, F., Lu, W. & Dong, Z. Tumor-infiltrating macrophages are involved in suppressing growth and metastasis of human prostate cancer cells by INF-beta gene therapy in nude mice. Clin Cancer Res 8, 2942-2951 (2002).
43.Levano, K.S., Jung, E.H. & Kenny, P.A. Breast cancer subtypes express distinct receptor repertoires for tumor-associated macrophage derived cytokines. Biochem Biophys Res Commun 411, 107-110 (2011).
44.Bingle, L., Brown, N.J. & Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196, 254-265 (2002).
45.Lewis, C.E. & Pollard, J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605-612 (2006).
46.Chen, J.J., et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23, 953-964 (2005).
47.Chen, J.J., et al. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 9, 729-737 (2003).
48.Hagemann, T., et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25, 1543-1549 (2004).
49.Lin, E.Y., Nguyen, A.V., Russell, R.G. & Pollard, J.W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193, 727-740 (2001).
50.Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7, 987-989 (2001).
51.Rolny, C., et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44 (2011).
52.Gabrilovich, D.I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162-174 (2009).
53.DeNardo, D.G., et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91-102 (2009).
54.Biswas, S.K., et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112-2122 (2006).
55.Ojalvo, L.S., King, W., Cox, D. & Pollard, J.W. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol 174, 1048-1064 (2009).
56.Movahedi, K., et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70, 5728-5739 (2010).
57.Curiel, T.J., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942-949 (2004).
58.Martinez, F.O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177, 7303-7311 (2006).
59.Beyer, M. & Schultze, J.L. Plasticity of T(reg) cells: is reprogramming of T(reg) cells possible in the presence of FOXP3? Int Immunopharmacol 11, 555-560 (2011).
60.Wrzesinski, S.H., Wan, Y.Y. & Flavell, R.A. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13, 5262-5270 (2007).
61.Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The origin and function of tumor-associated macrophages. Immunol Today 13, 265-270 (1992).
62.Xue, W., et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660 (2007).
63.Squadrito, M.L. & De Palma, M. Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med 32, 123-145 (2011).
64.Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-727 (2006).
65.Dirkx, A.E., Oude Egbrink, M.G., Wagstaff, J. & Griffioen, A.W. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80, 1183-1196 (2006).
66.Vesely, M.D., Kershaw, M.H., Schreiber, R.D. & Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29, 235-271 (2011).
67.Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity''s roles in cancer suppression and promotion. Science 331, 1565-1570 (2011).
68.Goh, A.M., Coffill, C.R. & Lane, D.P. The role of mutant p53 in human cancer. J Pathol 223, 116-126 (2011).
69.Lane, D. & Levine, A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2, a000893 (2010).
70.Reinhardt, H.C. & Schumacher, B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28, 128-136 (2012).
71.Ozaki, T. & Nakagawara, A. p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2011, 603925 (2011).
72.Komarova, E.A., et al. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23, 3265-3271 (2004).
73.Tavana, O., et al. Absence of p53-dependent apoptosis leads to UV radiation hypersensitivity, enhanced immunosuppression and cellular senescence. Cell Cycle 9, 3328-3336 (2010).
74.Martinez-Cruz, A.B., et al. Spontaneous tumor formation in Trp53-deficient epidermis mediated by chromosomal instability and inflammation. Anticancer Res 29, 3035-3042 (2009).
75.Donehower, L.A., et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221 (1992).
76.Lujambio, A., et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449-460 (2013).
77.Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798-809 (2009).
78.Lee, C.K., Smith, E., Gimeno, R., Gertner, R. & Levy, D.E. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN-gamma. J Immunol 164, 1286-1292 (2000).
79.Kovarik, J., et al. Malignant melanoma associates with deficient IFN-induced STAT 1 phosphorylation. Int J Mol Med 12, 335-340 (2003).
80.Deng, H., et al. The antagonistic effect between STAT1 and Survivin and its clinical significance in gastric cancer. Oncol Lett 3, 193-199 (2012).
81.Simpson, J.A., et al. Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut 59, 926-933 (2010).
82.Adamkova, L., Souckova, K. & Kovarik, J. Transcription protein STAT1: biology and relation to cancer. Folia Biol (Praha) 53, 1-6 (2007).
83.Koebel, C.M., et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903-907 (2007).
84.Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6, 836-848 (2006).
85.Darnell, J.E., Jr., Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421 (1994).
86.Meraz, M.A., et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431-442 (1996).
87.Durbin, J.E., Hackenmiller, R., Simon, M.C. & Levy, D.E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450 (1996).
88.Eizirik, D.L., Moore, F., Flamez, D. & Ortis, F. Use of a systems biology approach to understand pancreatic beta-cell death in Type 1 diabetes. Biochem Soc Trans 36, 321-327 (2008).
89.Suk, K., et al. IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J Immunol 166, 4481-4489 (2001).
90.Moore, F., et al. STAT1 is a master regulator of pancreatic {beta}-cell apoptosis and islet inflammation. J Biol Chem 286, 929-941 (2011).
91.Bouker, K.B., et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 26, 1527-1535 (2005).
92.Barthson, J., et al. Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem 286, 39632-39643 (2011).
93.Chin, Y.E., et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272, 719-722 (1996).
94.Kumar, A., Commane, M., Flickinger, T.W., Horvath, C.M. & Stark, G.R. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278, 1630-1632 (1997).
95.Xu, X., Fu, X.Y., Plate, J. & Chong, A.S. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 58, 2832-2837 (1998).
96.Huang, Y.Q., Li, J.J. & Karpatkin, S. Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway. J Biol Chem 275, 6462-6468 (2000).
97.Levy, D.E. & Gilliland, D.G. Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene 19, 2505-2510 (2000).
98.Kaplan, D.H., et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95, 7556-7561 (1998).
99.Lee, C.K., et al. Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol 165, 3571-3577 (2000).
100.Takaoka, A., et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516-523 (2003).
101.Ventura, A., et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661-665 (2007).
102.Yamanishi, Y., et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol 160, 123-130 (2002).
103.Okuda, Y., Okuda, M. & Bernard, C.C. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol 135, 29-37 (2003).
104.Kim, H.S. & Lee, M.S. STAT1 as a key modulator of cell death. Cell Signal 19, 454-465 (2007).
105.Maier, B., et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev 18, 306-319 (2004).
106.Liu, D. & Xu, Y. p53, oxidative stress, and aging. Antioxid Redox Signal 15, 1669-1678 (2011).
107.Townsend, P.A., et al. STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279, 5811-5820 (2004).
108.Youlyouz-Marfak, I., et al. Identification of a novel p53-dependent activation pathway of STAT1 by antitumour genotoxic agents. Cell Death Differ 15, 376-385 (2008).
109.Yoshimura, A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 97, 439-447 (2006).
110.Zheng, S.J., Lamhamedi-Cherradi, S.E., Wang, P., Xu, L. & Chen, Y.H. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54, 1423-1428 (2005).
111.Lin, S.Y., et al. HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma. Nucleic Acids Res 38, 6148-6158 (2010).
112.Chang, T.P., et al. Tumor suppressor HLJ1 binds and functionally alters nucleophosmin via activating enhancer binding protein 2alpha complex formation. Cancer research 70, 1656-1667 (2010).
113.Chen, C.H. Generalized Association Plots for Information Visualization: The applications of the convergence of iteratively formed correlation matrices
Statistica Sinica 12, 1-23 (2002).
114.Shedden, K., et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14, 822-827 (2008).
115.Robinson, B.D., et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15, 2433-2441 (2009).
116.Mukhtar, R.A., Nseyo, O., Campbell, M.J. & Esserman, L.J. Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn 11, 91-100 (2011).
117.Ma, J., et al. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10, 112 (2010).
118.Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22, 231-237 (2010).
119.Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. & Schreiber, R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3, 991-998 (2002).
120.Luo, Y.P., et al. The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene 29, 662-673 (2010).
121.Konstantopoulos, K. & Thomas, S.N. Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11, 177-202 (2009).
122.Miyazono, K., Ehata, S. & Koinuma, D. Tumor-promoting functions of transforming growth factor-beta in progression of cancer. Ups J Med Sci (2011).
123.Yuan, Y., et al. Angiogenin is involved in lung adenocarcinoma cell proliferation and angiogenesis. Lung Cancer 66, 28-36 (2009).
124.Yoshioka, N., Wang, L., Kishimoto, K., Tsuji, T. & Hu, G.F. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc Natl Acad Sci U S A 103, 14519-14524 (2006).
125.Demidova, A.R., Aau, M.Y., Zhuang, L. & Yu, Q. Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control. J Biol Chem 284, 4132-4139 (2009).
126.St Germain, C., et al. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3. Neoplasia 12, 527-538 (2010).
127.Taguchi, T., et al. Protein levels of p21, p27, cyclin E and Bax predict sensitivity to cisplatin and paclitaxel in head and neck squamous cell carcinomas. Oncol Rep 11, 421-426 (2004).
128.Sheikh, M.S., et al. Identification of several human homologs of hamster DNA damage-inducible transcripts. Cloning and characterization of a novel UV-inducible cDNA that codes for a putative RNA-binding protein. J Biol Chem 272, 26720-26726 (1997).
129.Oyadomari, S. & Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11, 381-389 (2004).
130.Lee, Y.Y., Cevallos, R.C. & Jan, E. An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2alpha phosphorylation. J Biol Chem 284, 6661-6673 (2009).
131.Zerbini, L.F., et al. NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci U S A 101, 13618-13623 (2004).
132.Smith, M.L., et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266, 1376-1380 (1994).
133.Novakova, Z., et al. Cytokine expression and signaling in drug-induced cellular senescence. Oncogene 29, 273-284 (2010).
134.Kuilman, T., et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031 (2008).
1.Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA: a cancer journal for clinicians 64, 9-29 (2014).
2.Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F. & Wong, K.K. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14, 535-546 (2014).
3.Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).
4.Hajra, K.M., Chen, D.Y. & Fearon, E.R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62, 1613-1618 (2002).
5.Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nature cell biology 16, 488-494 (2014).
6.Gardi, N.L., Deshpande, T.U., Kamble, S.C., Budhe, S.R. & Bapat, S.A. Discrete molecular classes of ovarian cancer suggestive of unique mechanisms of transformation and metastases. Clinical cancer research : an official journal of the American Association for Cancer Research 20, 87-99 (2014).
7.Shih, J.Y., et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 8070-8078 (2005).
8.Martinez-Estrada, O.M., et al. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. The Biochemical journal 394, 449-457 (2006).
9.Chen, J.J., et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61, 5223-5230 (2001).
10.Wang, C.C., et al. The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 24, 4081-4093 (2005).
11.Chen, C.H., et al. A novel function of YWHAZ/beta-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis. Molecular cancer research : MCR 10, 1319-1331 (2012).
12.Chen, C.C., et al. Shisa3 is associated with prolonged survival through promoting beta-catenin degradation in lung cancer. American journal of respiratory and critical care medicine 190, 433-444 (2014).
13.Semi, K., Matsuda, Y., Ohnishi, K. & Yamada, Y. Cellular reprogramming and cancer development. Int J Cancer 132, 1240-1248 (2013).
14.Zendman, A.J., Cornelissen, I.M., Weidle, U.H., Ruiter, D.J. & van Muijen, G.N. CTp11, a novel member of the family of human cancer/testis antigens. Cancer Res 59, 6223-6229 (1999).
15.Zendman, A.J., et al. The human SPANX multigene family: genomic organization, alignment and expression in male germ cells and tumor cell lines. Gene 309, 125-133 (2003).
16.Westbrook, V.A., et al. Spermatid-specific expression of the novel X-linked gene product SPAN-X localized to the nucleus of human spermatozoa. Biology of reproduction 63, 469-481 (2000).
17.Westbrook, V.A., et al. Genomic organization, incidence, and localization of the SPAN-x family of cancer-testis antigens in melanoma tumors and cell lines. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 101-112 (2004).
18.Salemi, M., et al. Expression of SPANX proteins in human-ejaculated spermatozoa and sperm precursors. International journal of andrology 27, 134-139 (2004).
19.Westbrook, V.A., et al. Hominoid-specific SPANXA/D genes demonstrate differential expression in individuals and protein localization to a distinct nuclear envelope domain during spermatid morphogenesis. Molecular human reproduction 12, 703-716 (2006).
20.Wang, Z., et al. Gene expression and immunologic consequence of SPAN-Xb in myeloma and other hematologic malignancies. Blood 101, 955-960 (2003).
21.Zamuner, F.T., et al. A Comprehensive Expression Analysis of Cancer Testis Antigens in Head and Neck Squamous Cell Carcinoma Revels MAGEA3/6 as a Marker for Recurrence. Molecular cancer therapeutics 14, 828-834 (2015).
22.Yilmaz-Ozcan, S., et al. Epigenetic mechanisms underlying the dynamic expression of cancer-testis genes, PAGE2, -2B and SPANX-B, during mesenchymal-to-epithelial transition. PloS one 9, e107905 (2014).
23.Salemi, M., et al. Expression of SPANX proteins in normal prostatic tissue and in prostate cancer. European journal of histochemistry : EJH 54, e41 (2010).
24.Kouprina, N., et al. Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome research 15, 1477-1486 (2005).
25.Tajeddine, N., et al. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 65, 7348-7355 (2005).
26.Kalashnikova, E.V., et al. ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2. Cancer Res 70, 9402-9412 (2010).
27.Iles, R.K. Ectopic hCGbeta expression by epithelial cancer: malignant behaviour, metastasis and inhibition of tumor cell apoptosis. Mol Cell Endocrinol 260-262, 264-270 (2007).
28.Song, M.H., Choi, K.U., Shin, D.H., Lee, C.H. & Lee, S.Y. Identification of the cancer/testis antigens AKAP3 and CTp11 by SEREX in hepatocellular carcinoma. Oncology reports 28, 1792-1798 (2012).
29.Chen, Z., et al. Cancer/testis antigens and clinical risk factors for liver metastasis of colorectal cancer: a predictive panel. Diseases of the colon and rectum 53, 31-38 (2010).
30.Yang, P., Huo, Z., Liao, H. & Zhou, Q. Cancer/testis antigens trigger epithelial-mesenchymal transition and genesis of cancer stem-like cells. Current pharmaceutical design 21, 1292-1300 (2015).
31.Kouprina, N., et al. Mutational analysis of SPANX genes in families with X-linked prostate cancer. The Prostate 67, 820-828 (2007).
32.Chen, Y.T., Cao, D., Chiu, R. & Lee, P. Chromosome X-encoded Cancer/Testis antigens are less frequently expressed in non-seminomatous germ cell tumors than in seminomas. Cancer immunity 13, 10 (2013).
33.Westbrook, V.A., et al. Differential nuclear localization of the cancer/testis-associated protein, SPAN-X/CTp11, in transfected cells and in 50% of human spermatozoa. Biology of reproduction 64, 345-358 (2001).
34.Eferl, R. & Wagner, E.F. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3, 859-868 (2003).
35.Kappelmann, M., Bosserhoff, A. & Kuphal, S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. European journal of cell biology 93, 76-81 (2014).
36.Yan, L., et al. Activation of the canonical Wnt/beta-catenin pathway in ATF3-induced mammary tumors. PloS one 6, e16515 (2011).
37.Nguyen, P.T., et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. British journal of cancer 109, 2248-2258 (2013).
38.Chen, H., et al. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 69, 9228-9235 (2009).
39.Ramsdale, R., et al. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal 8, ra82 (2015).
40.Liu, J., et al. The oncogene c-Jun impedes somatic cell reprogramming. Nature cell biology 17, 856-867 (2015).
41.Gerald, D., Chintharlapalli, S., Augustin, H.G. & Benjamin, L.E. Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy. Cancer Res 73, 1649-1657 (2013).
42.Imanishi, Y., et al. Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67, 4254-4263 (2007).
43.Dong, Y.D., et al. Expression and clinical significance of HMGB1 in human liver cancer: Knockdown inhibits tumor growth and metastasis in vitro and in vivo. Oncology reports 29, 87-94 (2013).
44.Chang, Y.H., Chen, C.M., Chen, H.Y. & Yang, P.C. Pathway-based gene signatures predicting clinical outcome of lung adenocarcinoma. Scientific reports 5, 10979 (2015).
45.Chow, K.H., Factor, R.E. & Ullman, K.S. The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12, 196-209 (2012).
46.Gonzalez, J.M., Navarro-Puche, A., Casar, B., Crespo, P. & Andres, V. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 183, 653-666 (2008).
47.Van den Bossche, J., Malissen, B., Mantovani, A., De Baetselier, P. & Van Ginderachter, J.A. Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 119, 1623-1633 (2012).
48.Salahshor, S., et al. Frequent accumulation of nuclear E-cadherin and alterations in the Wnt signaling pathway in esophageal squamous cell carcinomas. Mod Pathol 21, 271-281 (2008).
49.Su, Y.J., Chang, Y.W., Lin, W.H., Liang, C.L. & Lee, J.L. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/beta-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis 4, e157 (2015).
50.Chetty, R., Serra, S. & Asa, S.L. Loss of membrane localization and aberrant nuclear E-cadherin expression correlates with invasion in pancreatic endocrine tumors. Am J Surg Pathol 32, 413-419 (2008).
51.Hou, J., et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PloS one 5, e10312 (2010).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊