|
1. Becker, K., C. Heilmann, and G. Peters, Coagulase-negative staphylococci. Clin Microbiol Rev, 2014. 27(4): p. 870-926. 2. Abdul Rahman, Z., et al., The significance of coagulase-negative staphylococci bacteremia in a low resource setting. J Infect Dev Ctries, 2013. 7(6): p. 448-52. 3. Tashiro, M., et al., Clinical significance of methicillin-resistant coagulase-negative staphylococci obtained from sterile specimens. Diagn Microbiol Infect Dis, 2015. 81(1): p. 71-5. 4. Krause, R., et al., Molecular typing of coagulase-negative staphylococcal blood and skin culture isolates to differentiate between bacteremia and contamination. Eur J Clin Microbiol Infect Dis, 2003. 22(12): p. 760-3. 5. Lai, C.C., et al., Changing aetiology of healthcare-associated bloodstream infections at three medical centres in Taiwan, 2000-2011. Epidemiol Infect, 2014. 142(10): p. 2180-5. 6. Hung, K.H., et al., Evaluation of discrepancies between oxacillin and cefoxitin susceptibility in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis, 2011. 30(6): p. 785-8. 7. Hsueh, P.-R., C.-Y. Liu, and K.-T. Luh, Current status of antimicrobial resistance in Taiwan. Emerging infectious diseases, 2002. 8(2): p. 132-137. 8. Archer, G.L. and J. Johnston, Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides. Antimicrobial Agents and Chemotherapy, 1983. 24(1): p. 70-77. 9. Frost, L.S., et al., Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol, 2005. 3(9): p. 722-32. 10. Oliynyk, M., et al., Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol, 2007. 25(4): p. 447-53. 11. Poehlsgaard, J. and S. Douthwaite, The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol, 2005. 3(11): p. 870-81. 12. Gaynor, M. and A.S. Mankin, Macrolide antibiotics: binding site, mechanism of action, resistance. Current topics in medicinal chemistry, 2003. 3(9): p. 949-960. 13. WASHINGTON, J.A. and W.R. WILSON. Erythromycin: a microbial and clinical perspective after 30 years of clinical use (second of two parts). in Mayo Clinic Proceedings. 1985. Elsevier. 14. Gatermann, S.G., T. Koschinski, and S. Friedrich, Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect, 2007. 13(8): p. 777-81. 15. Cetin, E.S., et al., Macrolide–lincosamide–streptogramin B resistance phenotypes in clinical staphylococcal isolates. International journal of antimicrobial agents, 2008. 31(4): p. 364-368. 16. Li, L., et al., Macrolide-lincosamide-streptogramin resistance phenotypes and genotypes of coagulase-positive Staphylococcus aureus and coagulase-negative staphylococcal isolates from bovine mastitis. BMC Vet Res, 2015. 11: p. 168. 17. Weisblum, B., Erythromycin resistance by ribosome modification. Antimicrobial agents and chemotherapy, 1995. 39(3): p. 577. 18. Ramu, H., A. Mankin, and N. Vazquez-Laslop, Programmed drug-dependent ribosome stalling. Mol Microbiol, 2009. 71(4): p. 811-24. 19. Weisblum, B., Inducible resistance to macrolides, lincosamides and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression–a review. Journal of Antimicrobial Chemotherapy, 1985. 16(suppl A): p. 63-90. 20. Zmantar, T., et al., Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC research notes, 2011. 4(1): p. 453. 21. Roberts, M.C., et al., Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrobial Agents and Chemotherapy, 1999. 43(12): p. 2823-2830. 22. Thakker-Varia, S., et al., Molecular epidemiology of macrolides-lincosamides-streptogramin B resistance in Staphylococcus aureus and coagulase-negative staphylococci. Antimicrobial agents and chemotherapy, 1987. 31(5): p. 735-743. 23. Weisblum, B., et al., Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. Journal of bacteriology, 1971. 106(3): p. 835-847. 24. Hiramatsu, K., et al., Genomic basis for methicillin resistance in Staphylococcus aureus. Infection & chemotherapy, 2013. 45(2): p. 117-136. 25. Novick, R., et al., Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid, 1979. 2(1): p. 109-129. 26. Horinouchi, S. and B. Weisblum, Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. Journal of Bacteriology, 1982. 150(2): p. 804-814. 27. Westh, H., et al., erm genes in erythromycin‐resistant Staphylococcus aureus and coagulase‐negative staphylococci. APMIS, 1995. 103(1‐6): p. 225-232. 28. Schmitz, F.-J., et al., Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. Journal of Antimicrobial Chemotherapy, 2000. 45(6): p. 891-894. 29. Wang, C.-C., et al., Epidemiological typing of community-acquired methicillin-resistant Staphylococcus aureus isolates from children in Taiwan. Clinical infectious diseases, 2004. 39(4): p. 481-487. 30. Tannock, G.W., et al., Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100-63. Plasmid, 1994. 31(1): p. 60-71. 31. Tsai, J.C., et al., The erm(T) gene is flanked by IS1216V in inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus. Antimicrob Agents Chemother, 2005. 49(10): p. 4347-50. 32. Moon, D.C., et al., Identification of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates in Korea and Molecular Comparison Between Isolates from Animal Carcasses and Slaughterhouse Workers. Foodborne pathogens and disease, 2015. 12(4): p. 327-334. 33. Li, G., et al., Staphylococcus aureus ST6-t701 Isolates from Food-Poisoning Outbreaks (2006–2013) in Xi''an, China. Foodborne pathogens and disease, 2015. 12(3): p. 203-206. 34. Gomez-Sanz, E., et al., Chromosomal integration of the novel plasmid pUR3912 from methicillin-susceptible Staphylococcus aureus ST398 of human origin. Clin Microbiol Infect, 2013. 19(11): p. E519-22. 35. Rahman, A., et al., Methicillin-resistant coagulase-negative staphylococci (MRCoNS) by disk diffusion method. Mymensingh medical journal: MMJ, 2013. 22(2): p. 229-231. 36. Malachowa, N. and F.R. DeLeo, Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci, 2010. 67(18): p. 3057-71. 37. Hauschild, T. and S. Stepanović, Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism analysis of dnaJ gene. Journal of clinical microbiology, 2008. 46(12): p. 3875-3879. 38. Cockerill, F.R., Clinical, and L.S. Institute, Performance standards for antimicrobial susceptibility testing: twenty-third informational supplement;[... provides updated tables for... M02-A11, M07-A9, and M11-A8]. 2013: National Committee for Clinical Laboratory Standards. 39. Zhu, X.Y., et al., 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002. 68(1): p. 124-137. 40. Kado, C., amp, and S. Liu, Rapid procedure for detection and isolation of large and small plasmids. Journal of bacteriology, 1981. 145(3): p. 1365-1373. 41. Putnam, S.D., et al., Worldwide summary of telavancin spectrum and potency against Gram-positive pathogens: 2007 to 2008 surveillance results. Diagnostic microbiology and infectious disease, 2010. 67(4): p. 359-368. 42. Barton, B.M., G.P. Harding, and A.J. Zuccarelli, A general method for detecting and sizing large plasmids. Analytical biochemistry, 1995. 226(2): p. 235-240. 43. Shah, M.M., et al., dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. International journal of systematic and evolutionary microbiology, 2007. 57(1): p. 25-30. 44. Shin, J.H., et al., Identification of coagulase-negative staphylococci isolated from continuous ambulatory peritoneal dialysis fluid using 16S ribosomal RNA, tuf, and SodA gene sequencing. Peritoneal Dialysis International, 2011. 31(3): p. 340-346. 45. Liu, D., et al., Use of a putative transcriptional regulator gene as target for specific identification of Staphylococcus epidermidis. Letters in applied microbiology, 2006. 43(3): p. 325-330. 46. Chang, S.-C., et al., Macrolides resistance of common bacteria isolated from Taiwan. Diagnostic microbiology and infectious disease, 1995. 23(4): p. 147-154. 47. Flamm, R.K., et al., Linezolid Surveillance Results for the United States (LEADER Surveillance Program 2011). Antimicrobial agents and chemotherapy, 2012: p. AAC. 02112-12. 48. ZHANG, Y.-c., et al., Meticillin Resistance and Glycopeptide Resistance in Clinical Coagulase-negative Staphylococci: Detection and Analysis [J]. Chinese Journal of Nosocomiology, 2007. 9: p. 054. 49. Lina, G., et al., Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrobial Agents and Chemotherapy, 1999. 43(5): p. 1062-1066. 50. 萬采玟, 甲氧西林敏感金黃色葡萄球菌之抗紅黴素基因結構分析. 國立台灣大學,臺北市。. 51. Sousa, M., et al., Genetic Diversity and Antibiotic Resistance Among Coagulase-Negative Staphylococci Recovered from Birds of Prey in Portugal. Microbial Drug Resistance, 2016. 52. Miragaia, M., et al., Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. Journal of bacteriology, 2007. 189(6): p. 2540-2552. 53. Deplano, A., et al., National surveillance of Staphylococcus epidermidis recovered from bloodstream infections in Belgian hospitals. Journal of Antimicrobial Chemotherapy, 2016. 71(7): p. 1815-1819. 54. Haznedaroğlu, T., et al., Testing for induction of clindamycin resistance in erythromycin-resistant isolates of coagulase negative staphylococci and Staphylococcus aureus. Tıp Araştırmaları Dergisi, 2011. 9(2). 55. Gómez-Sanz, E., et al., Analysis of a novel erm (T)-and cadDX-carrying plasmid from methicillin-susceptible Staphylococcus aureus ST398-t571 of human origin. Journal of Antimicrobial Chemotherapy, 2012: p. dks411. 56. Palmieri, C., et al., Interspecies mobilization of an erm (T)-carrying plasmid of Streptococcus dysgalactiae subsp. equisimilis by a coresident ICE of the ICESa2603 family. Journal of Antimicrobial Chemotherapy, 2012: p. dks352. 57. Woodbury, R.L., et al., Plasmid-borne erm (T) from invasive, macrolide-resistant Streptococcus pyogenes strains. Antimicrobial agents and chemotherapy, 2008. 52(3): p. 1140-1143.
|