跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳蔓潔
研究生(外文):Man-Chieh Chen
論文名稱:台灣地區神經母細胞瘤ALK基因多型性及基因突變分析
論文名稱(外文):Analysis of Genetic Polymorphisms and Mutations on ALK Gene in Neuroblastoma in Taiwanese Population
指導教授:胡忠怡
口試委員:林亮音盧孟佑劉彥麟郭遠燁
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:104
中文關鍵詞:神經母細胞瘤ALK基因突變臨床預後
外文關鍵詞:NeuroblastomaALK genemutationclinical outcome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經母細胞瘤(Neuroblastoma, NB)是源自於交感神經系統前驅細胞的胚胎性惡性腫瘤。罹患第四期NB的病童即使遵循常規治療預後仍差,其五年存活率低於40%,亟待找出更有效的治療標的物。多年來在NB的研究都指出造成治療失敗的特徵是腫瘤具有MYCN增幅。近年來許多研究認為ALK (Anaplastic lymphoma kinase)可能是另一個與NB致病相關的重要基因:臨床上發現high-risk NB若高度表現ALK,其病患存活率低於不表現ALK者。造成ALK基因異常表現的原因除了ALK基因gain/amplification (12.2% / 1.5% in NB),尚與ALK基因突變( 8% in NB)或其他未知原因有關。ALK是一酪胺酸激酶接受器 (receptor tyrosine kinase),當ALK的tyrosine kinase domain發生突變(如:F1174、F1245及R1275)會造成ALK過度活化,誘導細胞趨於癌化。ALK基因的調控經常與MYCN做連結,研究指出ALK的活化能促進MYCN表現;而MYCN亦能促進ALK轉錄表現。以ALK作為標的物的小分子抑制劑Crizotinb,臨床上已使用於有ALK轉位突變的非小細胞肺癌(NSCLC)之治療。在細胞實驗及小鼠xenograft模型中Crizotnib皆能有效抑制NB細胞及腫瘤生長,使ALK抑制劑具潛力為high-risk NB提供有效的輔助治療。然而,具有ALK F1174突變的轉殖小鼠NB動物模型中,Crizotinb無法抑制腫瘤發展,顯示ALK抑制劑對某些ALK突變的NB抑制效果不好;若改採用ALK小分子抑制物TAE-684則具有抑制ALK F1174突變的NB腫瘤。本研究目的為檢查台灣地區神經母細胞瘤中ALK基因表現及突變情形。將目前收集到34位健康成人PBMC以及61例NB病患檢體,針對ALK基因Exon20~25區域(kinase domain)及與其相鄰之Intron部分分段進行PCR,並進行核酸定序(Sanger’s sequencing)。在61例NB樣本中發現7例(11.3%)有ALK突變:3例為F1174L突變、3例為F1245突變,1例A1274T突變,未見到R1275突變;在Exon20~25中發現6個單一核苷酸多型性(SNPs)(3個SNPs位於外顯子之同義SNPs;3個SNPs位在Intron20及Intron25),此6個SNPs變異型基因分布頻率在NB腫瘤與正常PBMC無差異。將ALK基因突變與病人臨床資料進行分析,發現ALK基因突變與惡性NB(advanced stage、high risk、poorly differentiation、MYCN amplification)有關聯性。腫瘤帶有ALK突變病患存活率較差(EFS:HR 4.2,p=0.0021;OS:HR 5.6, p=0.0015)。並且在advanced stage、high-risk NB的次群分析中,帶有ALK突變的腫瘤病患顯著有存活期較短。以ALK基因表現量與病人臨床資料進行分析,ALK高度表現在腫瘤細胞分化程度低的NB(UNB、PDNB)較顯著(p=0.0012),其餘預後因子皆與ALK表現量高或低較無關聯。而ALK基因表現量與MYCN基因表現具有高度正相關(r=0.5831,p<0.0001),但與ALK基因突變或基因多型性無顯著關聯。分析ALK基因表現量與NB病人存活率,結果則顯示腫瘤中ALK表現量高與病人存活率較差(EFS:HR 2.3,p=0.0600;OS:HR 4.8,p=0.0240)。透過本研究一系列實驗數據與臨床資料的統計分析,我們得知:(1) ALK基因突變常出現在惡性神經母細胞瘤,病患的預後較差;在惡性(advanced stages, high risk)神經母細胞瘤中, ALK突變為造成疾病較快進展的重要因子。透過檢測病患腫瘤是否具ALK基因突變及為何種突變,能在診斷早期預測病人的預後及選擇何種ALK抑制劑作為病患的輔助治療。(2) 不論ALK基因是否突變,神經母細胞瘤腫瘤皆可能有ALK高度表現;而ALK的高表現量在ALKWT及ALKMut+病患中皆可發現。(3) 在NB腫瘤中ALK表現與MYCN表現呈顯著正相關。 (4) 腫瘤中ALK表現量高為不良預後因子。(5)國人的NB病例帶有對Crizotinib具抗藥性的ALK F1174L突變比例較國外為高,未來若要使用ALK抑制劑治療國人神經母細胞瘤,ALK基因kinase domain突變之篩檢將十分重要。

Neuroblastoma (NB) is an embryonal malignancy derived from precursor cells of the sympathetic nervous system. Children suffer from the stage 4 disease display a poor 5-years survival (less than 40%) even following multi-modality treatments. For years, studies of neurblastoma show that MYCN gene amplification consistently associated with treatment failure. Recently, anaplastic lymphoma kinase (ALK) has been evolved as an important factor in carcinogenesis of neuroblastoma. Previous studies showed that NB with high ALK immune reactivity was associated with clinical outcome. Aberration in ALK, including ALK gene gain/ amplification (12.2%/ 1.5% in NB), ALK gene mutations (8% in NB) and others, makes ALK the second most commonly mutated gene in neuroblastoma. ALK is a receptor tyrosine kinase, mutations on the tyrosine kinase domain of ALK (eg. F1174, F1245, and R1275), would cause ALK overactivation and predispose to carcinogenesis. ALK and MYCN showed regulatoty loop: ALK was able to stimulate MYCN promoter via activation of ERK signaling, and MYCN was found to bind onto ALK promoter region to regulate ALK transcription. Targeting to ALK, by small molecular inhibitor, Crizotinib has been applied in the treatment of NSCLC harboring ALK translocation. In cell experiments and mice xenograft model, crzotinib can also inhibit the growth of NB cell lines and NB tumors and make ALK inhibitors a potential effective adjuvant therapy for high-risk NB. However, in the MYCN-transgenic mice harboring ALK F1174 mutation, Crizotinib couldn’t inhibit the development of NB tumor, point out that Crizotinib is ineffective in inhibit ALK with certain mutation within kinase domain. ALK inhibitors have limitation in treatment. The goal of this research is to inspect the situation on ALK gene expression and mutations in neuroblastoma in Taiwan. 61 NB tumor samples sand PBMCs from 34 healthy adults were analyzed, PCR amplification of ALK gene fragments spanning exon20 to exon25 and theirs neighboring intronic regions, followed by Sanger’s sequencing, In 61 tumor DNA samples, 7 (11.3%) were found to have heterozygotic ALK mutation: 3 F1174L mutation, 3 with F1245 mutation, 1 with A1274T mutation, but there is no R1275 mutation found. Moreover, we find 6 SNPs in exon20 to 25 of ALK gene, 3 SNPs are synonymous variants which located in exon20, 21 and23; the other 3 SNPs are intron variants, located in intron20 and 25. The allelic distribution of the ALK SNPs is not significantly different between NB tumors and normal PBMCs. We find that ALK mutation is associated with adverse clinical features (advanced stage, high risk, poorly differentiation, and MYCN amplification), and inferior survival (EFS: HR 4.2, p=0.0021; OS:HR 5.6, p=0.0015). Subset analysis of advanced stage, high-risk NB showed that patient harboring ALK mutation displayed a shorter 5-year survival. Relative mRNA expression of ALK and MYCN were determinate by q-RT-PCR. ALK expression was found positively correlated with MYCN gene expression (r=0.5831, p<0.0001). High ALK expression was associated with undifferentiated/ poorly differentiated NB (p=0.0012), but not with ALK mutation, ALK genetic polymorphism, nor other clinical features. We found ALK high expression correlated with worse patients’ survival (EFS: HR 2.3, p=0.0600; OS: HR 4.8, p=0.0240).
In Summary, we obtain information in our research: (1) ALK gene mutation occurs in NB with adverse clinical features. Further, ALK mutation is an important factor that cause faster disease progression in advanced stage and/or high-risk NB. Detection of ALK mutational spectrum in early diagnosis, could predict patients’ prognosis and choice suitable ALK inhibitor as adjuvant therapy in neuroblastoma. (2) ALK high expression could exist in ALK WT or mutant+ tumors. ALK high expression was not necessary found in ALKMut+ tumor. (3) ALK expression is highly correlated with MYCN expression in NB tumor, (4) High ALK expression in NB tumor predicts poor clinical outcomes. (5) ALK F1174L (known Crizotinib-resistant) is a prevalent type of mutation in NB in Taiwan. Screening ALK mutation to evaluate the use of ALK inhibitor as therapentics is very important for NB patients in Taiwan.

致謝…………………………………………………………………………………I
摘要…………………………………………………………………………………II
Abstract……………………………………………………………………………IV
縮寫表………………………………………………………………………………VI
目錄…………………………………………………………………………………X
表目錄………………………………………………………………………………XIV
圖目錄………………………………………………………………………………XV
附錄目錄……………………………………………………………………………XVI
第一章 緒論………………………………………………………………………1
1.1 神經母細胞瘤………………………………………………………………1
1.1.1 神經母細胞瘤簡介……………………………………………………1
1.1.2 神經母細胞瘤的致病機轉……………………………………………1
1.1.3 神經母細胞瘤的臨床表現……………………………………………2
1.1.4 神經母細胞瘤的診斷與分期…………………………………………2
1.1.5 神經母細胞瘤的病理特徵……………………………………………3
1.1.6 神經母細胞瘤的治療…………………………………………………4
1.1.7 神經母細胞瘤的分子標記及預後指標………………………………5
1.2 Anaplastic lymphoma kinase (ALK)基因……………………………………7
1.2.1 ALK基因的簡介………………………………………………………7
1.2.2 ALK基因的腫瘤學歷史………………………………………………8
1.2.3 ALK基因與神經母細胞瘤……………………………………………9
1.2.4 ALK基因的調控………………………………………………………10
1.2.5 ALK抑制劑在神經母細胞瘤中的潛力………………………………10
1.3 研究假說……………………………………………………………………11
第二章 研究目的與實驗設計……………………………………………………12
2.1 研究目的……………………………………………………………………12
2.2 實驗設計……………………………………………………………………12
第三章 材料與方法………………………………………………………………13
[實驗材料]…………………………………………………………………………13
3.1 臨床檢體……………………………………………………………………13
3.2 試劑、試藥、試劑套組與工作清單………………………………………13
3.2.1 試劑試藥清單…………………………………………………………13
3.2.2 試劑套組………………………………………………………………14
3.2.3 試劑配方………………………………………………………………14
(a) DNA製備………………………………………………………………14
(b) Polymerase Chain Reaction (PCR)…………………………………….15
3.2.4 聚合酶連鎖反應之引子序列…………………………………………15
(a) ALK基因………………………………………………………………15
(b) Control gene……………………………………………………………16
3.2.5 反轉錄聚合酶連鎖反應/即時定量反轉錄聚合酶連鎖反應之引子…16
(a) ALK基因………………………………………………………………16
(b) MYCN基因……………………………………………………………16
(c) Control gene……………………………………………………………16
3.2.6實驗儀器………………………………………………………………17
3.2.7軟體與網路工具………………………………………………………17
[實驗方法]…………………………………………………………………………18
3.3檢體DNA、RNA製備………………………………………………………18
3.3.1傳統常規DNA萃取……………………………………………………18
3.3.2傳統常規RNA萃取……………………………………………………18
3.3.3 以DNA、RNA及蛋白質萃取套組萃取神經母細胞腫瘤樣本………18
3.3.4 cDNA製備……………………………………………………………19
(a) SuperScript® III First-Strand Synthesis System………………………19
(b) Maxima First Strand cDNA Synthesis Kit with dsDNase………………19
3.4聚合酶連鎖反應引子設計…………………………………………………19
3.5聚合酶連鎖反應 (Polymerase Chain Reaction, PCR)………………………19
3.6反轉錄聚合酶連鎖反應 (Reverse Transcription-PCR, RT-PCR)…………20
3.7聚合酶連鎖反應產物純化與定序…………………………………………20
3.8即時定量聚合酶連鎖反應…………………………………………………20
3.9數據統計分析………………………………………………………………20
第四章 結果………………………………………………………………………22
[臨床資料及檢體收案情形]………………………………………………………22
4.1 神經母細胞瘤預後因子與病患存活率之分析……………………………22
4.2 ALK基因突變及基因多型性分析…………………………………………23
4.2.1 神經母細胞瘤病人腫瘤中ALK基因突變分析………………………23
4.2.2 ALK突變基因型的表現………………………………………………23
4.2.3神經母細胞瘤病人ALK基因突變與預後分子相關性之分析………24
4.2.4 ALK基因多型性分析…………………………………………………25
4.3 ALK基因表現量分析………………………………………………………26
4.3.1 神經母細胞瘤中ALK基因表現量之分析……………………………26
4.3.2 ALK基因表現量與神經母細胞瘤預後因子之關聯性………………27
4.3.3 ALK基因表現量與ALK基因突變之關聯性…………………………28
4.3.4 ALK基因表現量與ALK基因多型性之關聯性………………………29
4.3.5 ALK基因表現量與ALK組織化學染色之關聯性……………………29
4.3.6 ALK基因表現量與MYCN基因增幅及其MYCN表現量之相關性分析……29
4.4 ALK基因變異及基因表現量與神經母細胞瘤病患存活率之分析………30
4.4.1 ALK基因突變與神經母細胞瘤病患不良存活率具顯著相關性……30
4.4.2 ALK基因多型性與神經母細胞瘤病患存活率之相關性……………32
4.4.3 ALK基因表現與神經母細胞瘤病患存活率之相關性………………32
第五章 討論………………………………………………………………………33
第六章 參考文獻…………………………………………………………………38
圖與表………………………………………………………………………………52
附錄…………………………………………………………………………………80

1 Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3, 203-216 (2003).
2 中華民國兒童癌症基金會. 兒童神經母細胞瘤, <http://www.ccfroc.org.tw/child/child_affection_read.php?a_id=15> (
3 Hoehner, J. C., Gestblom, C., Hedborg, F., Sandstedt, B., Olsen, L. & Pahlman, S. A developmental model of neuroblastoma: differentiating stroma-poor tumors'' progress along an extra-adrenal chromaffin lineage. Laboratory investigation; a journal of technical methods and pathology 75, 659-675 (1996).
4 Center, S. F.-H. a. M. Unusual Cancers of Childhood Treatment (PDQ®) *, <https://www.saintfranciscare.com/saintfrancisdoctors/cancercenter/nci/CancerSummaryHP.aspx?id=CDR62872.xml> (
5 Janz, L. E. a. T. Childhood cancer incidence and mortality in Canada, <http://www.statcan.gc.ca/pub/82-624-x/2015001/article/14213-eng.htm> (
6 CelebrityDiagnosis. An Overview of Childhood Cancer, <http://www.celebritydiagnosis.com/2014/09/hear-sara-bareillescyndi-lauper-mashup-truly-brave-support-childhood-cancer-patients/> (
7 Hasan, M. K., Nafady, A., Takatori, A., Kishida, S., Ohira, M., Suenaga, Y., Hossain, S., Akter, J., Ogura, A., Nakamura, Y., Kadomatsu, K. & Nakagawara, A. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma. Scientific Reports 3, 3450, doi:10.1038/srep03450 (2013).
8 Philip A. Pizzo, D. G. P. Principles and Practice of Pediatric Oncology. 895–937 (2002).
9 NIH. Neuroblastoma Treatment (PDQ®)–Health Professional Version, <http://www.cancer.gov/types/neuroblastoma/hp/neuroblastoma-treatment-pdq#cit/section_1.5> (
10 Howlader N, N. A., Krapcho M, et al. SEER Cancer Statistics Review, 1975-2009.
11 Gurney, J. G., Ross, J. A., Wall, D. A., Bleyer, W. A., Severson, R. K. & Robison, L. L. Infant cancer in the U.S.: histology-specific incidence and trends, 1973 to 1992. Journal of pediatric hematology/oncology 19, 428-432 (1997).
12 London, W. B., Castleberry, R. P., Matthay, K. K., Look, A. T., Seeger, R. C., Shimada, H., Thorner, P., Brodeur, G., Maris, J. M., Reynolds, C. P. & Cohn, S. L. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children''s Oncology Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 6459-6465, doi:10.1200/jco.2005.05.571 (2005).
13 中華民國兒童癌症基金會. 100-103年度新發病個案疾病分類、年齡及性別統計表.
14 內政部統計處. 102-104年人口結構分析.
15 Mosse, Y. P., Laudenslager, M., Longo, L., Cole, K. A., Wood, A., Attiyeh, E. F., Laquaglia, M. J., Sennett, R., Lynch, J. E., Perri, P., Laureys, G., Speleman, F., Kim, C., Hou, C., Hakonarson, H., Torkamani, A., Schork, N. J., Brodeur, G. M., Tonini, G. P., Rappaport, E., Devoto, M. & Maris, J. M. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930-935, doi:10.1038/nature07261 (2008).
16 Triche, T. J. Neuroblastoma--biology confronts nosology. Archives of pathology & laboratory medicine 110, 994-996 (1986).
17 Messina, J. A., Cheng, S. C., Franc, B. L., Charron, M., Shulkin, B., To, B., Maris, J. M., Yanik, G., Hawkins, R. A. & Matthay, K. K. Evaluation of semi-quantitative scoring system for metaiodobenzylguanidine (mIBG) scans in patients with relapsed neuroblastoma. Pediatric blood & cancer 47, 865-74,doi:10.1002/pbc.20777 (2006).
18 Brodeur, G. M., Pritchard, J., Berthold, F., Carlsen, N. L., Castel, V., Castelberry, R. P., De Bernardi, B., Evans, A. E., Favrot, M., Hedborg, F. & et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 11, 1466-1477 (1993).
19 BD, J. Neuroblastoma Workup, <http://emedicine.medscape.com/article/439263-workup> (2015).
20 Maris, J. M. Recent advances in neuroblastoma. The New England journal of medicine 362, 2202-2211, doi:10.1056/NEJMra0804577 (2010).
21 Kushner, B. H. & Cheung, N. K. Neuroblastoma--from genetic profiles to clinical challenge. The New England journal of medicine 353, 2215-2217, doi:10.1056/NEJMp058251 (2005).
22 Park, J. R., Eggert, A. & Caron, H. Neuroblastoma: biology, prognosis, and treatment. Pediatric clinics of North America 55, 97-120, x, doi:10.1016/j.pcl.2007.10.014 (2008).
23 Evans, A. E., D''Angio, G. J., Propert, K., Anderson, J. & Hann, H. W. Prognostic factor in neuroblastoma. Cancer 59, 1853-1859 (1987).
24 Roy Choudhury, S., Karmakar, S., Banik, N. L. & Ray, S. K. Targeting angiogenesis for controlling neuroblastoma. Journal of oncology 2012, 782020, doi:10.1155/2012/782020 (2012).
25 NANT. Neuroblastoma, <http://www.nant.org/Patients_and_Families/neuroblastoma.php> (
26 Shimada, H., Ambros, I. M., Dehner, L. P., Hata, J., Joshi, V. V., Roald, B., Stram, D. O., Gerbing, R. B., Lukens, J. N., Matthay, K. K. & Castleberry, R. P. The International Neuroblastoma Pathology Classification (the Shimada system).Cancer 86, 364-372 (1999).
27 Peuchmaur, M., d''Amore, E. S., Joshi, V. V., Hata, J., Roald, B., Dehner, L. P., Gerbing, R. B., Stram, D. O., Lukens, J. N., Matthay, K. K. & Shimada, H. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 98, 2274-2281, doi:10.1002/cncr.11773 (2003).
28 Shimada, H. B., J; Sano, H. Neuroblastoma and Related Tumors. Pathology Case Reviews 10, 252-256 (2005).
29 Monclair, T., Brodeur, G. M., Ambros, P. F., Brisse, H. J., Cecchetto, G., Holmes, K., Kaneko, M., London, W. B., Matthay, K. K., Nuchtern, J. G., von Schweinitz, D., Simon, T., Cohn, S. L. & Pearson, A. D. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 298-303, doi:10.1200/jco.2008.16.6876 (2009).
30 Strother, D. R., London, W. B., Schmidt, M. L., Brodeur, G. M., Shimada, H., Thorner, P., Collins, M. H., Tagge, E., Adkins, S., Reynolds, C. P., Murray, K., Lavey, R. S., Matthay, K. K., Castleberry, R., Maris, J. M. & Cohn, S. L. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: results of Children''s Oncology Group study P9641. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30, 1842-1848, doi:10.1200/jco.2011.37.9990 (2012).
31 Baker, D. L., Schmidt, M. L., Cohn, S. L., Maris, J. M., London, W. B., Buxton, A., Stram, D., Castleberry, R. P., Shimada, H., Sandler, A., Shamberger, R. C., Look, A. T., Reynolds, C. P., Seeger, R. C. & Matthay, K. K. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. The New England journal of medicine 363, 1313-1323, doi:10.1056/NEJMoa1001527 (2010).
32 Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3, 203-216, doi:10.1038/nrc1014 (2003).
33 Seeger, R. C., Brodeur, G. M., Sather, H., Dalton, A., Siegel, S. E., Wong, K. Y. & Hammond, D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. The New England journal of medicine 313, 1111-1116, doi:10.1056/nejm198510313131802 (1985).
34 Kohl, N. E., Gee, C. E. & Alt, F. W. Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science (New York, N.Y.) 226, 1335-1337 (1984).
35 Riley, R. D., Heney, D., Jones, D. R., Sutton, A. J., Lambert, P. C., Abrams, K. R., Young, B., Wailoo, A. J. & Burchill, S. A. A systematic review of molecular and biological tumor markers in neuroblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 4-12 (2004).
36 Bown, N., Cotterill, S., Lastowska, M., O''Neill, S., Pearson, A. D., Plantaz, D., Meddeb, M., Danglot, G., Brinkschmidt, C., Christiansen, H., Laureys, G., Speleman, F., Nicholson, J., Bernheim, A., Betts, D. R., Vandesompele, J. & Van Roy, N. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. The New England journal of medicine 340, 1954-1961, doi:10.1056/nejm199906243402504 (1999).
37 White, P. S., Maris, J. M., Beltinger, C., Sulman, E., Marshall, H. N., Fujimori, M., Kaufman, B. A., Biegel, J. A., Allen, C., Hilliard, C., Valentine, M. B., Look, A. T., Enomoto, H., Sakiyama, S. & Brodeur, G. M. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3. Proceedings of the National Academy of Sciences of the United States of America 92, 5520-5524 (1995).
38 Saito-Ohara, F., Imoto, I., Inoue, J., Hosoi, H., Nakagawara, A., Sugimoto, T. & Inazawa, J. PPM1D is a potential target for 17q gain in neuroblastoma. Cancer research 63, 1876-1883 (2003).
39 Giannini, G., Cerignoli, F., Mellone, M., Massimi, I., Ambrosi, C., Rinaldi, C., Dominici, C., Frati, L., Screpanti, I. & Gulino, A. High mobility group A1 is a molecular target for MYCN in human neuroblastoma. Cancer research 65, 8308-8316, doi:10.1158/0008-5472.can-05-0607 (2005).
40 Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592-598, doi:10.1038/35036504 (2000).
41 Lasorella, A., Boldrini, R., Dominici, C., Donfrancesco, A., Yokota, Y., Inserra, A. & Iavarone, A. Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer research 62, 301-306 (2002).
42 Hogarty, M. D., Norris, M. D., Davis, K., Liu, X., Evageliou, N. F., Hayes, C. S., Pawel, B., Guo, R., Zhao, H., Sekyere, E., Keating, J., Thomas, W., Cheng, N. C., Murray, J., Smith, J., Sutton, R., Venn, N., London, W. B., Buxton, A., Gilmour, S. K., Marshall, G. M. & Haber, M. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer research 68, 9735-9745, doi:10.1158/0008-5472.can-07-6866 (2008).
43 Rounbehler, R. J., Li, W., Hall, M. A., Yang, C., Fallahi, M. & Cleveland, J. L. Targeting ornithine decarboxylase impairs development of MYCN-amplified neuroblastoma. Cancer research 69, 547-553, doi:10.1158/0008-5472.can-08-2968 (2009).
44 Chen, L., Iraci, N., Gherardi, S., Gamble, L. D., Wood, K. M., Perini, G., Lunec,J. & Tweddle, D. A. p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer research 70, 1377-1388, doi:10.1158/0008-5472.can-09-2598 (2010).
45 Hatzi, E., Murphy, C., Zoephel, A., Ahorn, H., Tontsch, U., Bamberger, A. M., Yamauchi-Takihara, K., Schweigerer, L. & Fotsis, T. N-myc oncogene overexpression down-regulates leukemia inhibitory factor in neuroblastoma. European journal of biochemistry / FEBS 269, 3732-3741 (2002).
46 Fredlund, E., Ringner, M., Maris, J. M. & Pahlman, S. High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America 105, 14094-14099, doi:10.1073/pnas.0804455105 (2008).
47 Sawai, S., Shimono, A., Wakamatsu, Y., Palmes, C., Hanaoka, K. & Kondoh, H. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development (Cambridge, England) 117, 1445-1455 (1993).
48 Sawai, S., Shimono, A., Hanaoka, K. & Kondoh, H. Embryonic lethality resulting from disruption of both N-myc alleles in mouse zygotes. The New biologist 3, 861-869 (1991).
49 Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. The EMBO journal 16, 2985-2995, doi:10.1093/emboj/16.11.2985 (1997).
50 Janoueix-Lerosey, I., Schleiermacher, G., Michels, E., Mosseri, V., Ribeiro, A., Lequin, D., Vermeulen, J., Couturier, J., Peuchmaur, M., Valent, A., Plantaz, D., Rubie, H., Valteau-Couanet, D., Thomas, C., Combaret, V., Rousseau, R., Eggert, A., Michon, J., Speleman, F. & Delattre, O. Overall genomic pattern is a predictor of outcome in neuroblastoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 1026-1033, doi:10.1200/jco.2008.16.0630 (2009).
51 Schleiermacher, G., Michon, J., Ribeiro, A., Pierron, G., Mosseri, V., Rubie, H., Munzer, C., Benard, J., Auger, N., Combaret, V., Janoueix-Lerosey, I., Pearson, A., Tweddle, D. A., Bown, N., Gerrard, M., Wheeler, K., Noguera, R., Villamon, E., Canete, A., Castel, V., Marques, B., de Lacerda, A., Tonini, G. P., Mazzocco, K., Defferrari, R., de Bernardi, B., di Cataldo, A., van Roy, N., Brichard, B., Ladenstein, R., Ambros, I., Ambros, P., Beiske, K., Delattre, O. & Couturier, J. Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). British journal of cancer 105, 1940-1948, doi:10.1038/bjc.2011.472 (2011).
52 Defferrari, R., Mazzocco, K., Ambros, I. M., Ambros, P. F., Bedwell, C., Beiske, K., Benard, J., Berbegall, A. P., Bown, N., Combaret, V., Couturier, J., Erminio, G., Gambini, C., Garaventa, A., Gross, N., Haupt, R., Kohler, J., Jeison, M., Lunec, J., Marques, B., Martinsson, T., Noguera, R., Parodi, S., Schleiermacher, G., Tweddle, D. A., Valent, A., Van Roy, N., Vicha, A., Villamon, E. & Tonini, G. P. Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. British journal of cancer 112, 290-295, doi:10.1038/bjc.2014.557 (2015).
53 Schleiermacher, G., Janoueix-Lerosey, I., Ribeiro, A., Klijanienko, J., Couturier, J., Pierron, G., Mosseri, V., Valent, A., Auger, N., Plantaz, D., Rubie, H., Valteau-Couanet, D., Bourdeaut, F., Combaret, V., Bergeron, C., Michon, J. & Delattre, O. Accumulation of segmental alterations determines progression in neuroblastoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28, 3122-3130, doi:10.1200/jco.2009.26.7955 (2010).
54 Caren, H., Kryh, H., Nethander, M., Sjoberg, R. M., Trager, C., Nilsson, S., Abrahamsson, J., Kogner, P. & Martinsson, T. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proceedings of the National Academy of Sciences of the United States of America 107, 4323-4328, doi:10.1073/pnas.0910684107 (2010).
55 Joshi, V. V., Cantor, A. B., Brodeur, G. M., Look, A. T., Shuster, J. J., Altshuler, G., Larkin, E. W., Holbrook, C. T., Silverman, J. F., Norris, H. T. & et al. Correlation between morphologic and other prognostic markers of neuroblastoma. A study of histologic grade, DNA index, N-myc gene copy number, and lactic dehydrogenase in patients in the Pediatric Oncology Group. Cancer 71, 3173-3181 (1993).
56 Bresler, S. C., Weiser, D. A., Huwe, P. J., Park, J. H., Krytska, K., Ryles, H., Laudenslager, M., Rappaport, E. F., Wood, A. C., McGrady, P. W., Hogarty, M. D., London, W. B., Radhakrishnan, R., Lemmon, M. A. & Mosse, Y. P. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer cell 26, 682-694, doi:10.1016/j.ccell.2014.09.019 (2014).
57 Iwahara, T., Fujimoto, J., Wen, D., Cupples, R., Bucay, N., Arakawa, T., Mori, S., Ratzkin, B. & Yamamoto, T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439-449, doi:10.1038/sj.onc.1200849 (1997).
58 Morris, S. W., Naeve, C., Mathew, P., James, P. L., Kirstein, M. N., Cui, X. & Witte, D. P. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin''s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14, 2175-2188, doi:10.1038/sj.onc.1201062 (1997).
59 Mano, H. ALKoma: a cancer subtype with a shared target. Cancer discovery 2, 495-502, doi:10.1158/2159-8290.cd-12-0009 (2012).
60 Beckmann, G. & Bork, P. An adhesive domain detected in functionally diverse receptors. Trends in biochemical sciences 18, 40-41 (1993).
61 Pulford, K., Lamant, L., Morris, S. W., Butler, L. H., Wood, K. M., Stroud, D., Delsol, G. & Mason, D. Y. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 89, 1394-1404 (1997).
62 Stoica, G. E., Kuo, A., Aigner, A., Sunitha, I., Souttou, B., Malerczyk, C., Caughey, D. J., Wen, D., Karavanov, A., Riegel, A. T. & Wellstein, A. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. The Journal of biological chemistry 276, 16772-16779, doi:10.1074/jbc.M010660200 (2001).
63 Stoica, G. E., Kuo, A., Powers, C., Bowden, E. T., Sale, E. B., Riegel, A. T. & Wellstein, A. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. The Journal of biological chemistry 277, 35990-35998, doi:10.1074/jbc.M205749200 (2002).
64 Mathivet, T., Mazot, P. & Vigny, M. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)? Cellular signalling 19, 2434-2443, doi:10.1016/j.cellsig.2007.07.011 (2007).
65 Pulford, K., Lamant, L., Espinos, E., Jiang, Q., Xue, L., Turturro, F., Delsol, G. & Morris, S. W. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cellular and molecular life sciences : CMLS 61, 2939-2953,doi:10.1007/s00018-004-4275-9 (2004).
66 Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L. & Look, A. T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin''s lymphoma. Science (New York, N.Y.) 263, 1281-1284 (1994).
67 Lawrence, B., Perez-Atayde, A., Hibbard, M. K., Rubin, B. P., Dal Cin, P., Pinkus, J. L., Pinkus, G. S., Xiao, S., Yi, E. S., Fletcher, C. D. & Fletcher, J. A. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. The American journal of pathology 157, 377-384, doi:10.1016/s0002-9440(10)64550-6 (2000).
68 Jazii, F. R., Najafi, Z., Malekzadeh, R., Conrads, T. P., Ziaee, A. A., Abnet, C., Yazdznbod, M., Karkhane, A. A. & Salekdeh, G. H. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World journal of gastroenterology 12, 7104-7112 (2006).
69 Sugawara, E., Togashi, Y., Kuroda, N., Sakata, S., Hatano, S., Asaka, R., Yuasa, T., Yonese, J., Kitagawa, M., Mano, H., Ishikawa, Y. & Takeuchi, K. Identification of anaplastic lymphoma kinase fusions in renal cancer: large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer 118, 4427-4436, doi:10.1002/cncr.27391 (2012).
70 Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., Fujiwara, S., Watanabe, H., Kurashina, K., Hatanaka, H., Bando, M., Ohno, S., Ishikawa, Y., Aburatani, H., Niki, T., Sohara, Y., Sugiyama, Y. & Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561-566, doi:10.1038/nature05945 (2007).
71 Debelenko, L. V., Raimondi, S. C., Daw, N., Shivakumar, B. R., Huang, D.,Nelson, M. & Bridge, J. A. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 24, 430-442, doi:10.1038/modpathol.2010.213 (2011).
72 Marino-Enriquez, A., Ou, W. B., Weldon, C. B., Fletcher, J. A. & Perez-Atayde, A. R. ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes, chromosomes & cancer 50, 146-153, doi:10.1002/gcc.20839 (2011).
73 Chen, Y., Takita, J., Choi, Y. L., Kato, M., Ohira, M., Sanada, M., Wang, L., Soda, M., Kikuchi, A., Igarashi, T., Nakagawara, A., Hayashi, Y., Mano, H. & Ogawa, S. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971-974, doi:10.1038/nature07399 (2008).
74 George, R. E., Sanda, T., Hanna, M., Frohling, S., Luther, W., 2nd, Zhang, J., Ahn, Y., Zhou, W., London, W. B., McGrady, P., Xue, L., Zozulya, S., Gregor, V. E., Webb, T. R., Gray, N. S., Gilliland, D. G., Diller, L., Greulich, H., Morris, S. W., Meyerson, M. & Look, A. T. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975-978, doi:10.1038/nature07397 (2008).
75 Janoueix-Lerosey, I., Lequin, D., Brugieres, L., Ribeiro, A., de Pontual, L., Combaret, V., Raynal, V., Puisieux, A., Schleiermacher, G., Pierron, G., Valteau-Couanet, D., Frebourg, T., Michon, J., Lyonnet, S., Amiel, J. & Delattre, O. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967-970, doi:10.1038/nature07398 (2008).
76 R2 database, <http://hgserver1.amc.nl/cgi-bin/r2/main.cgi> (
77 Passoni, L., Longo, L., Collini, P., Coluccia, A. M., Bozzi, F., Podda, M., Gregorio, A., Gambini, C., Garaventa, A., Pistoia, V., Del Grosso, F., Tonini, G.P., Cheng, M., Gambacorti-Passerini, C., Anichini, A., Fossati-Bellani, F., Di Nicola, M. & Luksch, R. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer research 69, 7338-7346, doi:10.1158/0008-5472.can-08-4419 (2009).
78 Zhu, S., Lee, J. S., Guo, F., Shin, J., Perez-Atayde, A. R., Kutok, J. L., Rodig, S. J., Neuberg, D. S., Helman, D., Feng, H., Stewart, R. A., Wang, W., George, R. E., Kanki, J. P. & Look, A. T. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer cell 21, 362-373, doi:10.1016/j.ccr.2012.02.010 (2012).
79 Nur Atiqah Roshidi, R. R. M. a. S. D. ALK/MYCN Coamplification in Neuroblastoma: A Short Review. Academic Journal of Cancer Research 7, 27-33 (2014).
80 Schonherr, C., Ruuth, K., Kamaraj, S., Wang, C. L., Yang, H. L., Combaret, V., Djos, A., Martinsson, T., Christensen, J. G., Palmer, R. H. & Hallberg, B. Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 31, 5193-5200, doi:10.1038/onc.2012.12 (2012).
81 Heukamp, L. C., Thor, T., Schramm, A., De Preter, K., Kumps, C., De Wilde, B., Odersky, A., Peifer, M., Lindner, S., Spruessel, A., Pattyn, F., Mestdagh, P., Menten, B., Kuhfittig-Kulle, S., Kunkele, A., Konig, K., Meder, L., Chatterjee, S., Ullrich, R. T., Schulte, S., Vandesompele, J., Speleman, F., Buttner, R., Eggert, A. & Schulte, J. H. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Science translational medicine 4, 141ra191, doi:10.1126/scitranslmed.3003967 (2012).
82 Greengard EG, P. J. ALK-Related Neuroblastic Tumor Susceptibility. GeneReviews (2015).
83 Fischer M, S. M., Berthold F. Reliable transcript quantification by real-time reverse transcriptase-polymerase chain reaction in primary neuroblastoma using normalization to averaged expression levels of the control genes HPRT1 and SDHA. J Mol Diagn. 7, 89-96 (2005).
84 Bonvini, P., Zin, A., Alaggio, R., Pawel, B., Bisogno, G. & Rosolen, A. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma. British journal of cancer 109, 3084-3091, doi:10.1038/bjc.2013.653 (2013).
85 Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., O''Meara, S., Vastrik, I., Schmidt, E. E., Avis, T., Barthorpe, S., Bhamra, G., Buck, G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K., Halliday, K., Harrison, R., Hills, K., Hinton, J., Jenkinson, A., Jones, D., Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Shepherd, R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates, A., Cahill, D. P., Louis, D. N., Goldstraw, P., Nicholson, A. G., Brasseur, F., Looijenga, L., Weber, B. L., Chiew, Y. E., DeFazio, A., Greaves, M. F., Green, A. R., Campbell, P., Birney, E., Easton, D. F., Chenevix-Trench, G., Tan, M. H., Khoo, S. K., Teh, B. T., Yuen, S. T., Leung, S. Y., Wooster, R., Futreal, P. A. & Stratton, M. R. Patterns of somatic mutation in human cancer genomes. Nature 446, 153-158, doi:10.1038/nature05610 (2007).
86 Regairaz, M., Munier, F., Sartelet, H., Castaing, M., Marty, V., Renauleaud, C., Doux, C., Delbe, J., Courty, J., Fabre, M., Ohta, S., Viehl, P., Michiels, S., Valteau-Couanet, D. & Vassal, G. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma. The American journal of pathology 186, 435-445, doi:10.1016/j.ajpath.2015.10.016 (2016).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top