跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳培安
研究生(外文):Pei-An Wu
論文名稱:俄氏草花序分生組織基因CENTRORADIALIS於成花反轉的調控角色
論文名稱(外文):Function of CENTRORADIALIS in Regulating Floral Reversion of Titanotrichum
指導教授:王俊能
指導教授(外文):Chun-Neng Wang
口試委員:陳仁治余天心洪傳揚蔡文杰
口試委員(外文):Jen-Chih ChenTien-Shin YuChwan-Yang HongWen-Chieh Tsai
口試日期:2016-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:112
中文關鍵詞:成花反轉花序分生組織特性基因CENTRORADIALIS珠芽俄氏草
外文關鍵詞:Floral reversioninflorescence meristem identityCENTRORADIALISbulbilTitanotrichum oldhamii
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
被子植物由營養生長到開花的轉換過程,受到環境訊息、發育、荷爾蒙等因素縝密地調控。然而,部分被子植物在身處不利於開花的條件時,會出現稱為「成花反轉」的現象,使得花分生組織逆轉為營養性或花序特性。在自然情形下,苦苣苔科的俄氏草(Titanotrichum oldhamii)在花季晚期會經歷成花反轉、產生營養性的珠芽繁殖體,行使無性生殖。過去的研究指出俄氏草的成花反轉與花分生組織特性基因FLORICAULA / LEAFY(FLO/LFY)表現量下降有關,本研究卻發現ToFLO除了主要在花分生組織表現,也在珠芽序生成位置表現,暗示ToFLO表現降低並非成花反轉的必要條件。另一方面,花序分生組織特性基因TERMINAL FLOWER 1 / CENTRORADIALIS(TFL1/CEN)在模式物種中曾被報導與成花反轉相關。藉由qPCR,我發現ToCEN在莖頂高量表現,與成花反轉及珠芽序形成有關;ToCEN的原位雜合訊號,則顯示ToCEN的表現位在花序分生組織的中心區域及珠芽序原基中。將ToCEN在阿拉伯芥中異位表現,不但延遲開花,還促進花序分支生長,花序結構與珠芽序的形態極為相似;轉殖株的花也發生成花反轉為葉化枝條、花萼包圍的次生花序、雌蕊著生花苞的退化花等。此外,在野生型阿拉伯芥嫁接至35S::ToCEN轉殖株的實驗中,能在接穗中偵測到ToCEN的RNA,顯示ToCEN可能透過訊息傳輸抑制花發育、促進成花反轉以影響花序結構。總結而言,本研究揭示ToCEN可能調控俄氏草的成花反轉及珠芽發育,且透過訊息傳遞促進花序延長、抑制花發育和延遲開花時間。此外,ToCEN在俄氏草中可能獲得了珠芽序發育的新功能,使俄氏草能夠以此行使獨特的無性繁殖、完成生活史。

In angiosperms, the switch from vegetative growth to flowering is orchestrated by environmental signals, development, hormones, etc. However, few angiosperms go through “floral reversion”, floral meristems revert to vegetative or inflorescence identity, under conditions unfavorable for flowering. Naturally occurred Titanotrichum oldhamii (Gesneriaceae) reverting flowers to vegetative bulbils (propagules) in late flowering season for asexual reproduction. Previous studies suggested that floral reversion in Titanotrichum is related to floral meristem identity genes, FLORICAULA/LEAFY (FLO/LFY). In this study, however, ToFLO was found mainly expressed in typical floral meristem and the down-regulation expression of ToFLO during the initiation of bulbiliferous shoots suggest it may not be essential for floral reversion. In contrast, inflorescence meristem identity genes TERMINAL FLOWER 1/ CENTRORADIALIS (TFL1/CEN) were reported related to floral reversion in model plants. qPCR indicates the expression level of ToCEN is high in shoot apices, and this correlated to stages of floral reversion and initiation of bulbiliferous shoots. In situ hybridization signals of ToCEN demonstrate it was localized in central region of inflorescence meristem and bulbiliferous shoot primordia. Ectopic expression of ToCEN in Arabidopsis showed enhanced inflorescence architecture with extensive outgrowth of lateral shoot (coflorescence) branching, a phenotype greatly resembling bulbiliferous shoots, and delayed floral transition. Conversion of flowers into leaf‐like shoots, secondary inflorescence subtended by sepals and rudimentary flowers with buds on carpel are often found. In addition, in grafting of wild type Arabidopsis onto 35S::ToCEN stocks, I found that ToCEN RNA can be detected in grafted scions. This suggests ToCEN acts as transmissible signals to inhibit flower development and promote floral reversion to alter inflorescence architecture systematically. Together, this study revealed that ToCEN may regulate floral reversion and bulbil development of Titanotrichum, and also systematically functions in enhancing inflorescence outgrowth, inhibition of flower formation and delaying flowering time. ToCEN thus perhaps adopted a new role for bulbiliferous shoots formation in Titanotrichum, allowing it to incorporate this unique life history trait for asexual propagation.

致謝 i
中文摘要 ii
Abstract in English iii
Table of Contents v
List of Figures ix
List of Tables xi
Abbreviations xii
1. Introduction 1
1.1. Floral reversion 1
1.2. Pseudovivipary and bulbils: an alternative reproductive strategy 3
1.3. Titanotrichum oldhamii, a bulbiliferous plant with floral reversion 4
1.4. Regulation of floral transition, meristem identity and maintenance 7
1.5. Inflorescence meristem identity genes: TFL1/CEN 10
1.6. Aim of this study 14
2. Materials and Methods 16
2.1. Plant materials and growth condition 16
2.2. Molecular study 16
2.2.1. Genomic DNA extraction 16
2.2.2. Total RNA extraction 18
2.2.3. DNase treatment and advanced purification of total RNA 19
2.2.4. First-strand cDNA synthesis 20
2.2.5. Standard polymerase chain reaction (PCR) 21
2.2.6. Agarose gel electrophoresis 22
2.2.7. Quantitative real-time PCR (qPCR) 23
2.3. RNA in situ hybridization (ISH) 26
2.3.1. Fixation, dehydration and embedding 26
2.3.2. Microtomy 27
2.3.3. Production of large amount of plasmid for RNA probes 28
2.3.4. DIG-labeling in vitro transcription 29
2.3.5. Dot-blotting for quantification of RNA probes 31
2.3.6. In situ hybridization 32
2.3.7. Reaction termination and Imaging 35
2.4. Functional study of ToCEN using transgenic Arabidopsis 36
2.4.1. Selection of transformed seeds 36
2.4.2. Aseptic sowing and further cultivation on soil 36
2.4.3. Scanning electron microscope (SEM) 37
2.4.4. Statistical analysis 37
2.4.5. Grafting 38
3. Results 39
3.1. Field observation 39
3.2. RT-PCR for ToCEN, ToTFL and ToFLO in Titanotrichum 42
3.2.1. Design of RT-PCR 42
3.2.2. RT-PCR results of ToCEN, ToTFL and ToFLO 42
3.3. qPCR for ToCEN and ToTFL in Titanotrichum 45
3.3.1. Design of qPCR 45
3.3.2. qPCR results for ToCEN and ToTFL 45
3.4. RNA in situ hybridization results of ToCEN in Titanotrichum 48
3.5. Functional study of ToCEN overexpression in Arabidopsis 52
3.5.1. Selection of 35S::ToCEN transgenic plants via GFP and PCR 52
3.5.2. Weak and strong phenotype of 35S::ToCEN T2 plants 54
3.5.3. Effects on morphology in 35S::ToCEN T2 plants 58
3.5.4. Effects on floral transition in 35S::ToCEN T2 plants 61
3.6. Grafting of wild-type Arabidopsis on 35S::ToCEN T2 plants 66
4. Discussion 70
4.1. ToCEN expression was linked to floral reversion, while ToTFL was perhaps related to later stages of bulbil development 70
4.2. Spatial pattern of ToCEN expression is similar to other TFL1/CEN-like genes, but additionally associated with bulbil development 72
4.3. ToFLO expression may also acquire new functions in inflorescence maintenance and bulbiliferous shoot formation 73
4.4. ToCEN functions in controlling inflorescence architecture, inhibition of flower formation, and delaying floral transition 75
4.4.1. ToCEN regulated inflorescence architecture by affecting the length of main axis and lateral branching 75
4.4.2. Flower formation was also inhibited by ToCEN, leading to flower and inflorescence reversion 77
4.4.3. Ectopic expression of ToCEN in A. thaliana delayed floral transition 78
4.4.4. ToCEN may regulate floral reversion by graft-transmissible signals 79
Future aspects 82
References 84
Appendices 92
Appendix 1. Gene sequence used in this study 92
Appx. 1.1. Sequence of ToCEN (CDS and 3’-UTR) 92
Appx. 1.2. Sequence of ToTFL (CDS and 3’-UTR) 93
Appx. 1.3. Sequence of ToFLO (CDS and 3’-UTR) 94
Appendix 2. Phylogenetic reconstruction of TFL1/CEN-like genes 96
Appx. 2.1. Phylogenetic reconstruction of TFL1/CEN-like genes 96
Appx. 2.2. List of TFL1/CEN-like genes used in phylogeny 97
Appendix 3. Primer used in this study 99
Appx. 3.1. Primer used in RT-PCR 99
Appx. 3.2. Primer used in qPCR 100
Appx. 3.3. Primer used for in situ hybridization probe synthesis 101
Appx. 3.4. Primer used for identifying transgenic Arabidopsis 101
Appendix 4. qPCR primer efficiency test 102
Appx. 4.1. ToTubA1 102
Appx. 4.2. ToCEN 103
Appx. 4.3. ToTFL 104
Appx. 4.4. AtTubB 105
Appendix 5. In situ hybridization results for ToFLO in Titanotrichum 106
Appendix 6. Design of pFAST-G02 fusion with 35S::ToCEN 108
Appendix 7. Phenotypes of 35S::ToCEN T1 Arabidopsis 109
Appendix 8. Solution recipes for molecular study 110
Appx. 8.1. Experiments except for ISH 110
Appx. 8.2. Solution recipes for ISH 111
Appendix 9. qPCR of ToCEN expression in 35S::ToCEN T2 seedlings 112




1.Abraham-Juárez, M.J., Martínez-Hernández, A., Leyva-González, M.A., Herrera-Estrella, L., and Simpson, J. (2010). Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana. J. Exp. Bot. 61, 4055-4067.
2.Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo, S.Y., Henz, S.R., Brady, R.L., and Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25, 605-614.
3.Amaya, I., Ratcliffe, O.J., and Bradley, D.J. (1999). Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11, 1405-1417.
4.Böhlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A.M., Jansson, S., Strauss, S.H., and Nilsson, O. (2006). CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312, 1040-1043.
5.Baumann, K., Venail, J., Berbel, A., Domenech, M.J., Money, T., Conti, L., Hanzawa, Y., Madueno, F., and Bradley, D. (2015). Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. J. Exp. Bot. 66, 4769-4780.
6.Benlloch, R., Berbel, A., Ali, L., Gohari, G., Millán, T., and Madueño, F. (2015). Genetic control of inflorescence architecture in legumes. Front Plant Sci 6, 543.
7.Benlloch, R., Berbel, A., Serrano-Mislata, A., and Madueño, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Ann. Botany 100, 659-676.
8.Bernard, R. (1972). Two genes affecting stem termination in soybeans. Crop Sci. 12, 235-239.
9.Bernier, G. (1988). The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 175-219.
10.Blázquez, M.A. (2000). Flower development pathways. J. Cell. Sci. 113, 3547-3548.
11.Box, M.S., and Rudall, P.J. (2006). Floral structure and ontogeny in Globba (Zingiberaceae). Plant Syst. Evol. 258, 107-122.
12.Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R., and Görlach, J. (2001). Growth stage-based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. Plant Cell 13, 1499-1510.
13.Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S., and Coen, E. (1996). Control of inflorescence architecture in Antirrhinum. Nature 379, 791-797.
14.Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., and Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science 275, 80-83.
15.Chang, J. (2010). 俄氏草花序轉換中花序特性與成花定性基因之研究. 國立臺灣大學生態學與演化生物學研究所學位論文, 1-122.
16.Chang, L., Wu, L., Chen, Y., Ku, L., Yang, S., Zhang, S., Wang, X., and Wei, X. (2012). Expression and functional analysis of the ZCN1 (ZmTFL1) gene, a TERMINAL FLOWER 1 homologue that regulates the vegetative to reproductive transition in maize. Plant Mol. Biol. Rep. 30, 55-66.
17.Chardon, F., and Damerval, C. (2005). Phylogenomic analysis of the PEBP gene family in cereals. J. Mol. Evol. 61, 579-590.
18.Chen, Y.-J. (2009). 花反轉無性珠芽之可能基因調控─ 以俄氏草為例. 國立臺灣大學生態學與演化生物學研究所學位論文, 1-49.
19.Chen, Y., Jiang, P., Thammannagowda, S., Liang, H., and Wilde, H.D. (2013). Characterization of Peach TFL1 and Comparison with FT/TFL1 Gene Families of the Rosaceae. J. Am. Soc. Hortic. Sci. 138, 12-17.
20.Conti, L., and Bradley, D. (2007). TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19, 767-778.
21.Day, J.S., Loveys, B.R., and Aspinall, D. (1994). Manipulation of flowering and vegetative growth of brown boronia (Boronia megastigma Nees.) and white myrtle (Hypocalymma angustifolium Endl.) using plant growth regulators. Sci. Hortic. 56, 309-320.
22.Deng, T., Kim, C., Zhang, D.-G., Zhang, J.-W., Li, Z.-M., Nie, Z.-L., and Sun, H. (2013). Zhengyia shennongensis: A new bulbiliferous genus and species of the nettle family (Urticaceae) from central China exhibiting parallel evolution of the bulbil trait. Taxon 62, 89-99.
23.Diomaiuto, J. (1988). Periodic flowering or continual flowering as a function of temperature in a perennial species: the Ravenelle wallflower (Cheiranthus cheiri L.). Phytomorphology 38, 163-171.
24.Doyle, J.J. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13-15.
25.Elmqvist, T., and Cox, P.A. (1996). The evolution of vivipary in flowering plants. Oikos, 3-9.
26.Foucher, F., Morin, J., Courtiade, J., Cadioux, S., Ellis, N., Banfield, M.J., and Rameau, C. (2003). DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15, 2742-2754.
27.Guo, X.Z., Zhao, Z., Chen, J.H., Hu, X.H., and Luo, D. (2006). A putative CENTRORADIALIS/TERMINAL FLOWER 1-like gene, Ljcen1, plays a role in phase transition in Lotus japonicus. J. Plant Physiol. 163, 436-444.
28.Hanano, S., and Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23, 3172-3184.
29.Hanzawa, Y., Money, T., and Bradley, D. (2005). A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. U.S.A. 102, 7748-7753.
30.Harig, L., Beinecke, F.A., Oltmanns, J., Muth, J., Muller, O., Ruping, B., Twyman, R.M., Fischer, R., Prufer, D., and Noll, G.A. (2012). Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J. 72, 908-921.
31.Hedman, H., Kallman, T., and Lagercrantz, U. (2009). Early evolution of the MFT-like gene family in plants. Plant Mol. Biol. 70, 359-369.
32.Hiraoka, K., Yamaguchi, A., Abe, M., and Araki, T. (2013). The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol. 54, 352-368.
33.Hou, C.-J., and Yang, C.-H. (2009). Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol. 50, 1544-1557.
34.Huang, C.-T., and Hsieh, C.-F. (2014). Asexual bulbil development and diversification of reproductive strategy between Remusatia vivipara and Remusatia pumila (Araceae). Taiwania 59, 220-230.
35.Huang, N.-C., Jane, W.-N., Chen, J., and Yu, T.-S. (2012). Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J. 72, 175-184.
36.Imamura, T., Nakatsuka, T., Higuchi, A., Nishihara, M., and Takahashi, H. (2011). The gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol. 52, 1031-1041.
37.Jaeger, K.E., Pullen, N., Lamzin, S., Morris, R.J., and Wigge, P.A. (2013). Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25, 820-833.
38.Jensen, C.S., Salchert, K., Gao, C.X., Andersen, C., Didion, T., and Nielsen, K.K. (2004). Floral inhibition in red fescue (Festuca rubra L.) through expression of a heterologous flowering repressor from Lolium. Mol. Breeding 13, 37-48.
39.Jensen, C.S., Salchert, K., and Nielsen, K.K. (2001). A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 125, 1517-1528.
40.Jiang, K., Liberatore, K.L., Park, S.J., Alvarez, J.P., and Lippman, Z.B. (2013). Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet 9, 13.
41.Karlgren, A., Gyllenstrand, N., Kallman, T., Sundstrom, J.F., Moore, D., Lascoux, M., and Lagercrantz, U. (2011). Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution. Plant Physiol. 156, 1967-1977.
42.Kato, H., Honma, T., and Goto, K. (1998). CENTRORADIALIS/TERMINAL FLOWER 1 gene homolog is conserved in N. tabacum, a determinate inflorescence plant. J. Plant Res. 111, 289-294.
43.Kefu, Z., Hai, F., Xingyu, J., and San, Z. (2002). Critical day-length and photoinductive cycles for the induction of flowering in halophyte Suaeda salsa. Plant Sci 162, 27-31.
44.King, R.W. (1998). Dual Control of Flower Initiation and Development by Temperature and Photoperiod in Hardenbergia violacea. Aust. J. Bot. 46, 65-74.
45.Landers, K. (1995). Vernalization responses in narrow-leafed lupin (Lupinus angustifolius) genotypes. Crop Pasture Sci 46, 1011-1025.
46.Lee, I.C., Hong, S.W., Whang, S.S., Lim, P.O., Nam, H.G., and Koo, J.C. (2011). Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52, 651-662.
47.Lee, J.A., and Harmer, R. (1980). Vivipary, a reproductive strategy in response to environmental stress? Oikos 35, 254-265.
48.Levy, Y.Y., and Dean, C. (1998). The transition to flowering. Plant Cell 10, 1973-1989.
49.Liu, B., Watanabe, S., Uchiyama, T., Kong, F., Kanazawa, A., Xia, Z., Nagamatsu, A., Arai, M., Yamada, T., and Kitamura, K. (2010). The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 153, 198-210.
50.Martinez-Zapater, J.M., Coupland, G., Dean, C., and Koornneef, M. (1994). 16 The Transition to Flowering in Arabidopsis. CSH Monograph Archive 27, 403-433.
51.McCullough, E., Wright, K.M., Alvarez, A., Clark, C.P., Rickoll, W.L., and Madlung, A. (2010). Photoperiod‐dependent floral reversion in the natural allopolyploid Arabidopsis suecica. New Phytol. 186, 239-250.
52.Mimida, N., Goto, K., Kobayashi, Y., Araki, T., Ahn, J.H., Weigel, D., Murata, M., Motoyoshi, F., and Sakamoto, W. (2001). Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6, 327-336.
53.Molau, U. (1993). Relationships between flowering phenology and life history strategies in tundra plants. Arct. Antarct. Alp. Res. 25 , 391-402.
54.Moncur, M. (1992). Effect of low temperature on floral induction of Eucalyptus lansdowneana F. Muell. & J. Brown subsp. lansdowneana. Austral. J. Bot. 40, 157-167.
55.Muller-Xing, R., Clarenz, O., Pokorny, L., Goodrich, J., and Schubert, D. (2014). Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana. Plant Cell 26, 2457-2471.
56.Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473-497.
57.Nakagawa, M., Shimamoto, K., and Kyozuka, J. (2002). Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J. 29, 743-750.
58.Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 495-500.
59.Nisar, N., Verma, S., Pogson, B.J., and Cazzonelli, C.I. (2012). Inflorescence stem grafting made easy in Arabidopsis. Plant Methods 8, 1.
60.Oda-Yamamizo, C., Mitsuda, N., Sakamoto, S., Ogawa, D., Ohme-Takagi, M., and Ohmiya, A. (2016). The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep 6.
61.Odell, J.T., Nagy, F., and Chua, N.H. (1985). IDENTIFICATION OF DNA-SEQUENCES REQUIRED FOR ACTIVITY OF THE CAULIFLOWER MOSAIC VIRUS-35S PROMOTER. Nature 313, 810-812.
62.Okamuro, J.K., denBoer, B.G.W., LotysPrass, C., Szeto, W., and Jofuku, K.D. (1996). Flowers into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 93, 13831-13836.
63.Ordidge, M., Chiurugwi, T., Tooke, F., and Battey, N.H. (2005a). LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. The Plant journal : for cell and molecular biology 44, 985-1000.
64.Pillitteri, L.J., Lovatt, C.J., and Walling, L.L. (2004). Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol. 135, 1540-1551.
65.Pnueli, L., Carmel-Goren, L., Hareven, D., Gutfinger, T., Alvarez, J., Ganal, M., Zamir, D., and Lifschitz, E. (1998). The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125, 1979-1989.
66.Ratcliffe, O.J., Amaya, I., Vincent, C.A., Rothstein, S., Carpenter, R., Coen, E.S., and Bradley, D.J. (1998). A common mechanism controls the life cycle and architecture of plants. Development 125, 1609-1615.
67.Ratcliffe, O.J., Bradley, D.J., and Coen, E.S. (1999). Separation of shoot and floral identity in Arabidopsis. Development 126, 1109-1120.
68.Sandoval, S.d.C.D., Juárez, M.J.A., and Simpson, J. (2012). Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sex. Plant Reprod. 25, 11-26.
69.Shannon, S., and Meeks-Wagner, D.R. (1991). A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3, 877-892.
70.Shimada, T.L., Shimada, T., and Hara‐Nishimura, I. (2010). A rapid and non‐destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 61, 519-528.
71.Simpson, G.G., Gendall, A.R., and Dean, C. (1999). When to switch to flowering. Annu. Rev. Cell Dev. Biol. 15, 519-50.
72.Souer, E., Rebocho, A.B., Bliek, M., Kusters, E., de Bruin, R.A., and Koes, R. (2008). Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20, 2033-2048.
73.Sundström, J.F., Nakayama, N., Glimelius, K., and Irish, V.F. (2006). Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. The Plant Journal 46, 593-600.
74.Tian, Z., Wang, X., Lee, R., Li, Y., Specht, J.E., Nelson, R.L., McClean, P.E., Qiu, L., and Ma, J. (2010). Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. U.S.A. 107, 8563-8568.
75.Tooke, F., and Battey, N. (2003). Models of shoot apical meristem function. New Phytol. 159, 37-52.
76.Tooke, F., Ordidge, M., Chiurugwi, T., and Battey, N. (2005). Mechanisms and function of flower and inflorescence reversion. J. Exp. Bot. 56, 2587-2599.
77.Wang, C.-N., and Cronk, Q.C. (2003). Meristem fate and bulbil formation in Titanotrichum (Gesneriaceae). Am. J. Bot. 90, 1696-1707.
78.Wang, C.-N., Möller, M., and Cronk, Q.C. (2004a). Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii. Dev. Genes. Evol. 214, 122-127.
79.Wang, C.-N., Möller, M., and Cronk, Q.C. (2004b). Aspects of sexual failure in the reproductive processes of a rare bulbiliferous plant, Titanotrichum oldhamii (Gesneriaceae), in subtropical Asia. Sex. Plant Reprod. 17, 23-31.
80.Wang, C.-N., Möller, M., and Cronk, Q.C. (2004c). Phylogenetic position of Titanotrichum oldhamii (Gesneriaceae) inferred from four different gene regions. Syst. Bot. 29, 407-418.
81.Wang, Y. (2001). Reversion of floral development under adverse ecological conditions in Whytockia bijieensis (Gesneriaceae). Austral. J. Bot. 49, 253-258.
82.Washburn, C.F., and Thomas, J.F. (2000). Reversion of flowering in Glycine max (Fabaceae). Am. J. Bot. 87, 1425-1438.
83.Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843-859.
84.Wickland, D.P., and Hanzawa, Y. (2015). The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. Mol. Plant 8, 983-997.
85.Wigge, P.A. (2011). FT, A Mobile Developmental Signal in Plants. Curr. Biol, 21, R374-R378.
86.Winter, C.M., Austin, R.S., Blanvillain-Baufume, S., Reback, M.A., Monniaux, M., Wu, M.F., Sang, Y., Yamaguchi, A., Yamaguchi, N., Parker, J.E., et al. (2011). LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev. Cell 20, 430-443.
87.Yoo, S.J., Chung, K.S., Jung, S.H., Yoo, S.Y., Lee, J.S., and Ahn, J.H. (2010). BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J. 63, 241-253.
88.You, X., Wang, L., Liang, W., Gai, Y., Wang, X., and Chen, W. (2012). Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses. J. Proteomics 75, 1099-1118.
89.Zhang, S., Hu, W., Wang, L., Lin, C., Cong, B., Sun, C., and Luo, D. (2005). TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Sci. 168, 1393-1408.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top